Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 503(7477): 535-8, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24172901

RESUMO

The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.


Assuntos
Quirópteros/virologia , Peptidil Dipeptidase A/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , China , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Fezes/virologia , Imunofluorescência , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Pandemias/prevenção & controle , Pandemias/veterinária , Peptidil Dipeptidase A/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/isolamento & purificação , Vírion/ultraestrutura , Internalização do Vírus , Viverridae/metabolismo
2.
J Virol ; 90(14): 6573-6582, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170748

RESUMO

UNLABELLED: Bats harbor severe acute respiratory syndrome (SARS)-like coronaviruses (SL-CoVs) from which the causative agent of the 2002-2003 SARS pandemic is thought to have originated. However, despite the fact that a large number of genetically diverse SL-CoV sequences have been detected in bats, only two strains (named WIV1 and WIV16) have been successfully cultured in vitro These two strains differ from SARS-CoV only in containing an extra open reading frame (ORF) (named ORFX), between ORF6 and ORF7, which has no homology to any known protein sequences. In this study, we constructed a full-length cDNA clone of SL-CoV WIV1 (rWIV1), an ORFX deletion mutant (rWIV1-ΔX), and a green fluorescent protein (GFP)-expressing mutant (rWIV1-GFP-ΔX). Northern blotting and fluorescence microscopy indicate that ORFX was expressed during WIV1 infection. A virus infection assay showed that rWIV1-ΔX replicated as efficiently as rWIV1 in Vero E6, Calu-3, and HeLa-hACE2 cells. Further study showed that ORFX could inhibit interferon production and activate NF-κB. Our results demonstrate for the first time that the unique ORFX in the WIV1 strain is a functional gene involving modulation of the host immune response but is not essential for in vitro viral replication. IMPORTANCE: Bats harbor genetically diverse SARS-like coronaviruses (SL-CoVs), and some of them have the potential for interspecies transmission. A unique open reading frame (ORFX) was identified in the genomes of two recently isolated bat SL-CoV strains (WIV1 and -16). It will therefore be critical to clarify whether and how this protein contributes to virulence during viral infection. Here we revealed that the unique ORFX is a functional gene that is involved in the modulation of the host immune response but is not essential for in vitro viral replication. Our results provide important information for further exploration of the ORFX function in the future. Moreover, the reverse genetics system we constructed will be helpful for study of the pathogenesis of this group of viruses and to develop therapeutics for future control of emerging SARS-like infections.


Assuntos
Quirópteros/virologia , Fases de Leitura Aberta/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Replicação Viral/imunologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células HeLa , Humanos , Interferon beta/farmacologia , NF-kappa B/metabolismo , Fases de Leitura Aberta/genética , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/virologia , Células Vero
3.
J Gen Virol ; 95(Pt 11): 2442-2449, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25034867

RESUMO

Astroviruses infect humans and many animal species and cause gastroenteritis. To extensively understand the distribution and genetic diversity of astrovirus in small mammals, we tested 968 anal swabs from 39 animal species, most of which were bats and rodents. We detected diverse astroviruses in 10 bat species, including known bat astroviruses and a large number of novel viruses. Meanwhile, novel groups of astroviruses were identified in three wild rodent species and a remarkably high genetic diversity of astrovirus was revealed in Eothenomys cachinus. We detected astroviruses in captive-bred porcupines and a nearly full-length genome sequence was determined for one strain. Phylogenetic analysis of the complete ORF2 sequence suggested that this strain may share a common ancestor with porcine astrovirus type 2. Moreover, to our knowledge, this study reports the first discovery of astroviruses in shrews and pikas. Our results provide new insights for understanding these small mammals as natural reservoirs of astroviruses.


Assuntos
Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Mamíferos/virologia , Animais , Arvicolinae/virologia , China , Quirópteros/virologia , Variação Genética , Genoma Viral , Lagomorpha/virologia , Mamastrovirus/classificação , Dados de Sequência Molecular , Filogenia , Roedores/virologia , Musaranhos/virologia
4.
PLoS Med ; 9(12): e1001354, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23239944

RESUMO

Tiffany Bogich and colleagues find that breakdown or absence of public health infrastructure is most often the driver in pandemic outbreaks, whose prevention requires mainstream development funding rather than emergency funding.


Assuntos
Fortalecimento Institucional/métodos , Pandemias/prevenção & controle , Administração em Saúde Pública , Teoria de Sistemas , Fortalecimento Institucional/economia , Saúde Global , Órgãos Governamentais , Humanos , Agências Internacionais , Cooperação Internacional , Organizações sem Fins Lucrativos , Administração em Saúde Pública/economia
5.
Commun Biol ; 5(1): 844, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986178

RESUMO

Host-virus associations have co-evolved under ecological and evolutionary selection pressures that shape cross-species transmission and spillover to humans. Observed virus-host associations provide relevant context for newly discovered wildlife viruses to assess knowledge gaps in host-range and estimate pathways for potential human infection. Using models to predict virus-host networks, we predicted the likelihood of humans as hosts for 513 newly discovered viruses detected by large-scale wildlife surveillance at high-risk animal-human interfaces in Africa, Asia, and Latin America. Predictions indicated that novel coronaviruses are likely to infect a greater number of host species than viruses from other families. Our models further characterize novel viruses through prioritization scores and directly inform surveillance targets to identify host ranges for newly discovered viruses.


Assuntos
Vírus , Zoonoses , África , Animais , Animais Selvagens , Especificidade de Hospedeiro , Humanos , Zoonoses/epidemiologia
6.
One Health ; 13: 100301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34401458

RESUMO

Emerging diseases of zoonotic origin such as COVID-19 are a continuing public health threat in China that lead to a significant socioeconomic burden. This study reviewed the current laws and regulations, government reports and policy documents, and existing literature on zoonotic disease preparedness and prevention across the forestry, agriculture, and public health authorities in China, to articulate the current landscape of potential risks, existing mandates, and gaps. A total of 55 known zoonotic diseases (59 pathogens) are routinely monitored under a multi-sectoral system among humans and domestic and wild animals in China. These diseases have been detected in wild mammals, birds, reptiles, amphibians, and fish or other aquatic animals, the majority of which are transmitted between humans and animals via direct or indirect contact and vectors. However, this current monitoring system covers a limited scope of disease threats and animal host species, warranting expanded review for sources of disease and pathogen with zoonotic potential. In addition, the governance of wild animal protection and utilization and limited knowledge about wild animal trade value chains present challenges for zoonotic disease risk assessment and monitoring, and affect the completeness of mandates and enforcement. A coordinated and collaborative mechanism among different departments is required for the effective monitoring and management of disease emergence and transmission risks in the animal value chains. Moreover, pathogen surveillance among wild animal hosts and human populations outside of the routine monitoring system will fill the data gaps and improve our understanding of future emerging zoonotic threats to achieve disease prevention. The findings and recommendations will advance One Health collaboration across government and non-government stakeholders to optimize monitoring and surveillance, risk management, and emergency responses to known and novel zoonotic threats, and support COVID-19 recovery efforts.

7.
Int Health ; 12(2): 77-85, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32040190

RESUMO

BACKGROUND: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities. METHODS: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study. Data were collected through ethnographic interviews and field observations, and thematically coded and analysed to identify both risk and protective factors for zoonotic disease emergence at the individual, community and policy levels. RESULTS: Eighty-eight ethnographic interviews and 55 field observations were conducted at nine selected sites. Frequent human-animal interactions and low levels of environmental biosecurity in local communities were identified as risks for zoonotic disease emergence. Policies and programmes existing in the communities provide opportunities for zoonotic risk mitigation. CONCLUSIONS: This study explored the relationship among zoonotic risk and human behaviour, environment and policies in rural communities in southern China. It identifies key behavioural risk factors that can be targeted for development of tailored risk-mitigation strategies to reduce the threat of novel zoonoses.


Assuntos
Animais Selvagens/virologia , Doenças Transmissíveis Emergentes/transmissão , Infecções por Coronavirus/transmissão , Surtos de Doenças/prevenção & controle , Pneumonia Viral/transmissão , População Rural , Viroses/transmissão , Zoonoses/transmissão , Adolescente , Adulto , Animais , Betacoronavirus , COVID-19 , China/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pesquisa Qualitativa , Fatores de Risco , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , Viroses/epidemiologia , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/virologia
8.
bioRxiv ; 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32577651

RESUMO

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. We used a Bayesian statistical framework and sequence data from all known bat-CoVs (including 630 novel CoV sequences) to study their macroevolution, cross-species transmission, and dispersal in China. We find that host-switching was more frequent and across more distantly related host taxa in alpha-than beta-CoVs, and more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus . Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.

9.
Nat Commun ; 11(1): 4235, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843626

RESUMO

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 630 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Evolução Molecular , Zoonoses/transmissão , Animais , Teorema de Bayes , Betacoronavirus/classificação , Betacoronavirus/genética , Biodiversidade , COVID-19 , China , Quirópteros/classificação , Coronavirus/classificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Humanos , Pandemias , Filogenia , Filogeografia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Zoonoses/virologia
11.
ILAR J ; 58(3): 393-400, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253158

RESUMO

Environmental changes have a huge impact on the emergence and reemergence of certain infectious diseases, mostly in countries with high biodiversity and serious unresolved environmental, social, and economic issues. This article summarizes the most important findings with special attention to Brazil and diseases of present public health importance in the country such as Chikungunya, dengue fever, yellow fever, Zika, hantavirus pulmonary syndrome, leptospirosis, leishmaniasis, and Chagas disease. An extensive literature review revealed a relationship between infectious diseases outbreaks and climate change events (El Niño, La Niña, heatwaves, droughts, floods, increased temperature, higher rainfall, and others) or environmental changes (habitat fragmentation, deforestation, urbanization, bushmeat consumption, and others). To avoid or control outbreaks, integrated surveillance systems and effective outreach programs are essential. Due to strong global and local influence on emergence of infectious diseases, a more holistic approach is necessary to mitigate or control them in low-income nations.


Assuntos
Doenças Transmissíveis/epidemiologia , Animais , Brasil/epidemiologia , Mudança Climática , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/metabolismo , Surtos de Doenças , Humanos , Saúde Pública/estatística & dados numéricos
12.
Viruses ; 6(5): 2138-54, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24841387

RESUMO

Bats are recognized reservoirs for many emerging zoonotic viruses of public health importance. Identifying and cataloguing the viruses of bats is a logical approach to evaluate the range of potential zoonoses of bat origin. We characterized the fecal pathogen microbiome of both insectivorous and frugivorous bats, incorporating 281 individual bats comprising 20 common species, which were sampled in three locations of Yunnan province, by combining reverse transcription polymerase chain reaction (RT-PCR) assays and next-generation sequencing. Seven individual bats were paramyxovirus-positive by RT-PCR using degenerate primers, and these paramyxoviruses were mainly classified into three genera (Rubulavirus, Henipavirus and Jeilongvirus). Various additional novel pathogens were detected in the paramyxovirus-positive bats using Illumina sequencing. A total of 7066 assembled contigs (≥200 bp) were constructed, and 105 contigs matched eukaryotic viruses (of them 103 belong to 2 vertebrate virus families, 1 insect virus, and 1 mycovirus), 17 were parasites, and 4913 were homologous to prokaryotic microorganisms. Among the 103 vertebrate viral contigs, 79 displayed low identity (<70%) to known viruses including human viruses at the amino acid level, suggesting that these belong to novel and genetically divergent viruses. Overall, the most frequently identified viruses, particularly in bats from the family Hipposideridae, were retroviruses. The present study expands our understanding of the bat virome in species commonly found in Yunnan, China, and provides insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into humans.


Assuntos
Biodiversidade , Quirópteros/virologia , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/isolamento & purificação , Infecções por Retroviridae/veterinária , Retroviridae/isolamento & purificação , Animais , China/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Paramyxoviridae/classificação , Paramyxoviridae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Prevalência , Retroviridae/classificação , Retroviridae/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J R Soc Interface ; 10(81): 20120904, 2013 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389893

RESUMO

The identification of undiagnosed disease outbreaks is critical for mobilizing efforts to prevent widespread transmission of novel virulent pathogens. Recent developments in online surveillance systems allow for the rapid communication of the earliest reports of emerging infectious diseases and tracking of their spread. The efficacy of these programs, however, is inhibited by the anecdotal nature of informal reporting and uncertainty of pathogen identity in the early stages of emergence. We developed theory to connect disease outbreaks of known aetiology in a network using an array of properties including symptoms, seasonality and case-fatality ratio. We tested the method with 125 reports of outbreaks of 10 known infectious diseases causing encephalitis in South Asia, and showed that different diseases frequently form distinct clusters within the networks. The approach correctly identified unknown disease outbreaks with an average sensitivity of 76 per cent and specificity of 88 per cent. Outbreaks of some diseases, such as Nipah virus encephalitis, were well identified (sensitivity = 100%, positive predictive values = 80%), whereas others (e.g. Chandipura encephalitis) were more difficult to distinguish. These results suggest that unknown outbreaks in resource-poor settings could be evaluated in real time, potentially leading to more rapid responses and reducing the risk of an outbreak becoming a pandemic.


Assuntos
Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Modelos Teóricos , Sudeste Asiático/epidemiologia , Simulação por Computador , Diagnóstico Diferencial , Humanos
16.
Proc Natl Acad Sci U S A ; 103(51): 19368-73, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17158217

RESUMO

The spread of highly pathogenic H5N1 avian influenza into Asia, Europe, and Africa has resulted in enormous impacts on the poultry industry and presents an important threat to human health. The pathways by which the virus has and will spread between countries have been debated extensively, but have yet to be analyzed comprehensively and quantitatively. We integrated data on phylogenetic relationships of virus isolates, migratory bird movements, and trade in poultry and wild birds to determine the pathway for 52 individual introduction events into countries and predict future spread. We show that 9 of 21 of H5N1 introductions to countries in Asia were most likely through poultry, and 3 of 21 were most likely through migrating birds. In contrast, spread to most (20/23) countries in Europe was most likely through migratory birds. Spread in Africa was likely partly by poultry (2/8 introductions) and partly by migrating birds (3/8). Our analyses predict that H5N1 is more likely to be introduced into the Western Hemisphere through infected poultry and into the mainland United States by subsequent movement of migrating birds from neighboring countries, rather than from eastern Siberia. These results highlight the potential synergism between trade and wild animal movement in the emergence and pandemic spread of pathogens and demonstrate the value of predictive models for disease control.


Assuntos
Demografia , Surtos de Doenças , Saúde Global , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Modelos Teóricos , Filogenia , Animais , Aves , Análise por Conglomerados , Biologia Computacional , Evolução Molecular , Previsões , Influenza Aviária/transmissão , Funções Verossimilhança , Modelos Genéticos , Epidemiologia Molecular/métodos , Aves Domésticas
18.
Ecohealth ; 5(3): 390-1, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19050957
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA