Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 11(45): 27880-27896, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480732

RESUMO

Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials. NTP treatment can regenerate and improve skin function; however, its effectiveness on hair follicle (HF) growth and its underlying mechanisms need to be elucidated. Herein, we propose an air-based NTP treatment, which generates exogenous nitric oxide (eNO), as a therapeutic strategy for hair growth. The topical application of air-based NTP generates large amounts of eNO, which can be directly detected using a microelectrode NO sensor, in the dermis of mouse dorsal skin. Additionally, NTP-induced eNO has no cytotoxicity in normal human skin cells and promotes hair growth by increasing capillary tube formation, cellular proliferation, and hair/angiogenesis-related protein expression. Furthermore, NTP treatment promotes hair growth with adipogenesis and activation of CD34+CD44+ stem cells and improves the inter-follicular macroenvironment via increased perifollicular vascularity in the mouse hair regrowth model. Given the importance of the hair follicle (HF) cycle ratio (growth vs. regression vs. resting) in diagnosing alopecia, NTP treatment upregulates the stem cell activity of the HF to promote the anagen : catagen : telogen ratio, leading to improved hair growth. We confirmed the upregulation of increasing Wnt/ß-catenin signaling and activation of perifollicular adipose tissue and angiogenesis in HF regeneration. In conclusion, these results show that the eNO from NTP enhances the cellular activities of human skin cells and endothelial cells in vitro and stem cells in vivo, thereby increasing angiogenesis, adipogenesis, and hair growth in the skin dermis. Furthermore, the results of this study suggest that NTP treatment may be a highly efficient alternative in regenerative medicine for achieving enhanced hair growth.

2.
Cancers (Basel) ; 12(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121558

RESUMO

Various theragnostic agents have been devised and developed as cancer treatments; however, existing agents are often limited by their specific functions and complexities. Here, we report multifunctional magnetite (Fe3O4) nanoparticles functionalized with chlorin e6 (Ce6) and folic acid (FA) using a simple fabrication process to be used as theragnostic agents in photodynamic therapy (PDT). The effectiveness of cellular uptake of Fe3O4-Ce6-FA nanoparticles (FCF NPs) and its visualization as well as the photodynamic anticancer activities were evaluated. The mechanism of cancer cell death by the FCF NPs was also verified with qualitative and quantitative methods. Results indicate that FCF NPs have good penetration efficacy, resulting in excellent in vitro fluorescence and magnetic resonance imaging in cancer cells. FCF NPs exhibited promising anticancer activity in an irradiation time- and FCF NPs-dose-dependent manner in various cancer cell lines, leading to apoptotic cell death via morphological changes in cell membrane, nuclear, and DNA damage, and via overexpression of apoptosis-related genes, such as ZFP36L1, CYR61, GADD45G, caspases-2, -3, -9, 10, and -14. This study suggests that FCF NPs may be safely used in cancer therapy via PDT and could be a versatile therapeutic tool and biocompatible theragnostic agent, which may be used in diagnostic imaging.

3.
Nanomaterials (Basel) ; 9(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295878

RESUMO

A mixture of nanothin exfoliated (NTE) graphite and urea (CO(NH2)2) powder was treated with radio frequency (RF) thermal plasma to achieve in situ purification and nitrogen doping of NTE graphite using the high-temperature flame of the RF plasma. Reactive species such as NH3, NH2, and HCNO generated by the thermolysis of urea play an important role in the purification and nitrogen doping of NTE graphite. The nitrogen content of NTE graphite subjected to plasma treatment increased by 5 times compared with that of raw NTE graphite. Three types of nitrogen species, namely, quaternary N, pyridinic N, and pyrrolic N, were observed after N doping with plasma treatment. The sheet resistance of N-doped NTE graphite reduced to 12-21% compared to that of the untreated NTE graphite, with the corresponding resistivity being ~7 × 10-6 Ω m.

4.
Nanomaterials (Basel) ; 8(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217046

RESUMO

Photodynamic therapy (PDT) is a promising alternative to conventional cancer treatment methods. Nonetheless, improvement of in vivo light penetration and cancer cell-targeting efficiency remain major challenges in clinical photodynamic therapy. This study aimed to develop multifunctional magnetic nanoparticles conjugated with a photosensitizer (PS) and cancer-targeting molecules via a simple surface modification process for PDT. To selectively target cancer cells and PDT functionality, core magnetic (Fe3O4) nanoparticles were covalently bound with chlorin e6 (Ce6) as a PS and folic acid (FA). When irradiated with a 660-nm long-wavelength light source, the Fe3O4-Ce6-FA nanoparticles with good biocompatibility exerted marked anticancer effects via apoptosis, as confirmed by analyzing the translocation of the plasma membrane, nuclear fragmentation, activities of caspase-3/7 in prostate (PC-3) and breast (MCF-7) cancer cells. Ce6, used herein as a PS, is thus more useful for PDT because of its ability to produce a high singlet oxygen quantum yield, which is owed to deep penetration by virtue of its long-wavelength absorption band; however, further in vivo studies are required to verify its biological effects for clinical applications.

5.
Nanomaterials (Basel) ; 7(6)2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604596

RESUMO

Photodynamic therapy (PDT) has been adopted as a minimally invasive approach for the localized treatment of superficial tumors, representing an improvement in the care of cancer patients. To improve the efficacy of PDT, it is important to first select an optimized nanocarrier and determine the influence of light parameters on the photosensitizing agent. In particular, much more knowledge concerning the importance of fluence and exposure time is required to gain a better understanding of the photodynamic efficacy. In the present study, we synthesized novel folic acid-(FA) and hematoporphyrin (HP)-conjugated multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs), which were characterized as effective anticancer reagents for PDT, and evaluated the influence of incubation time and light exposure time on the photodynamic anticancer activities of CoFe2O4-HPs-FAs in prostate cancer cells (PC-3 cells). The results indicated that the same fluence at different exposure times resulted in changes in the anticancer activities on PC-3 cells as well as in reactive oxygen species formation. In addition, an increase of the fluence showed an improvement for cell photo-inactivation. Therefore, we have established optimized conditions for new multifunctional magnetic nanoparticles with direct application for improving PDT for cancer patients.

6.
Nanomaterials (Basel) ; 7(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621707

RESUMO

We report a novel zinc oxide (ZnO) nanoparticle with antioxidant properties, prepared by immobilizing the antioxidant 3-(3,4-dihydroxyphenyl)-2-propenoic acid (caffeic acid, CA) on the surfaces of micro-dielectric barrier discharge (DBD) plasma-treated ZnO nanoparticles. The microstructure and physical properties of ZnO@CA nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), infrared spectroscopy, and steady state spectroscopic methods. The antioxidant activity of ZnO@CA nanoparticles was evaluated using an ABTS (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolorization assay. ZnO@CA nanoparticles exhibited robust antioxidant activity. Moreover, ZnO@CA nanoparticles showed strong antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) including resistant bacteria such as methicillin-resistant S. aureus and against Gram-negative bacteria (Escherichia coli). Although Gram-negative bacteria appeared to be more resistant to ZnO@CA nanoparticles than Gram-positive bacteria, the antibacterial activity of ZnO@CA nanoparticles was dependent on particle concentration. The antioxidant and antibacterial activity of ZnO@CA may be useful for various biomedical and nanoindustrial applications.

7.
J Nanosci Nanotechnol ; 15(11): 9045-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726640

RESUMO

Nano-metal with nano-thin exfoliated (NTE) graphite hybrid material has been synthesized by radio frequency (RF) thermal plasma. A micro-sized nickel powder and the NTE graphite powder were fed into the RF plasma and nano sized nickel particles attached to the surface of the NTE graphite were found. In the high temperature of RF thermal plasma that is of higher than 10,000 K, the NTE graphite was not vaporized or damaged, while the metal powder was vaporized. The size of nickel nanoparticles on the NTE graphite was 40 80 nme. The size and number density of produced metal nanoparticle can be controlled by the process pressure in a reactor, the feeding ratio of raw materials, and the flow rate of working gas. X-ray diffraction results of the produced hybrid nano material indicate that there was a bonding between the nano metal and the NTE graphite. The inert nature of surface of the NTE graphite has been a barrier for the NTE graphite to be used a compounding additive. The nano metal covered NTE graphite will open up many potential applications of NTE graphite and polymer compound materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA