Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474920

RESUMO

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Adolescente , Adulto , Idade de Início , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Evolução Molecular , Feminino , Deleção de Genes , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Estabilidade Proteica , Convulsões/diagnóstico por imagem
2.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34637754

RESUMO

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação a CREB/genética , Proteínas do Citoesqueleto/metabolismo , Proteína p300 Associada a E1A/genética , Células-Tronco Embrionárias/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cromatina/química , Feminino , Genômica , Células HEK293 , Heterozigoto , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Proteômica , Ativação Transcricional
4.
J Genet Couns ; 33(1): 118-123, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351603

RESUMO

Educational use of clinical simulation is a way for students to immerse themselves within a realistic yet safe and structured environment as they practice clinical skills. It is widely used in healthcare training and evaluation, and there are best practices for design, implementation, debriefing, and assessment. An increasing number of genetic counseling graduate programs use simulation in various ways, ranging from role-plays to working with professional simulated/standardized patient (SP) actors. At this time, there is very little consistency across programs, research on the approaches, and standards by which simulation is incorporated into training. Simulation is an understudied but promising approach for genetic counselor (GC) education and assessment. After graduation, GCs demonstrate their competence as entry-level providers through American Board of Genetic Counseling (ABGC) multiple-choice examination (MCE), along with their participatory clinical encounters from graduate training. Data from genetic counseling and other professions highlight the limitations and biases of MCEs, suggesting they not only fail to accurately capture competency, but also that they disadvantage underrepresented individuals from entering the field. In addition, MCEs are limited as a tool for assessing nuanced counseling and communication skills, as compared to more quantitative scientific knowledge. We propose that innovative, evidence-based approaches such as simulation have the potential to not only enhance learning, but also to allow GCs to better demonstrate competency during training and in relation to the board examination. Collaborative approaches, research, and funding are needed to further explore the viability of routinely incorporating simulation into GC training and assessment.


Assuntos
Aconselhamento Genético , Testes Genéticos , Humanos , Escolaridade , Aprendizagem , Estudantes
5.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675510

RESUMO

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Espasmos Infantis , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Atrofia , Criança , Homeostase , Humanos , Lactente , Lisossomos , Fenótipo
6.
J Genet Couns ; 32(2): 315-324, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385723

RESUMO

Genetic counselors strive to provide high-quality genetic services. To do so, it is essential to define quality in genetic counseling and identify opportunities for improvement. This Professional Issues article provides an overview of the evaluation of healthcare quality in genetic counseling. The National Society of Genetic Counselors' Research, Quality, and Outcomes Committee partnered with Discern Health, a value-based healthcare policy consulting firm, to develop a care continuum model of genetic counseling. Using the proposed model, currently available quality measures relevant to genetic counseling in the US healthcare system were assessed, allowing for the identification of gaps and priority areas for further development. A total of 560 quality measures were identified that can be applied to various aspects of the care continuum model across a range of clinical specialty areas in genetic counseling, although few measures were specific to genetic counseling or genetic conditions. Areas where quality measures were lacking included: attitudes toward genetic testing, family communication, stigma, and issues of justice, equity, diversity, and inclusion. We discuss these findings and other strategies for an evidence-based approach to quality in genetic counseling. Strategic directions for the genetic counseling profession should include a consolidated approach to research on quality and value of genetic counseling, development of quality metrics and patient-experience measures, and engagement with other improvement activities. These strategies will allow for benchmarking, performance improvement, and future implementation in accountability programs which will strengthen genetic counseling as a profession that provides evidence-based high-quality care to all patients.


Assuntos
Conselheiros , Aconselhamento Genético , Humanos , Aconselhamento Genético/psicologia , Testes Genéticos , Atenção à Saúde , Serviços em Genética , Conselheiros/psicologia
7.
Am J Hum Genet ; 104(2): 203-212, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612693

RESUMO

Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Locomoção , Lisossomos/metabolismo , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequenciamento do Exoma , Adulto Jovem
8.
Am J Hum Genet ; 105(3): 606-615, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474318

RESUMO

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.


Assuntos
Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Masculino , Gravidez
9.
Am J Hum Genet ; 104(3): 542-552, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827498

RESUMO

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.


Assuntos
Motivos de Aminoácidos/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos Neurocognitivos/etiologia , Sequências Repetitivas de Ácido Nucleico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos Neurocognitivos/classificação , Transtornos Neurocognitivos/patologia , Fenótipo , Prognóstico , Síndrome
10.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30580808

RESUMO

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Assuntos
Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Mutação , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/genética , Humanos , Masculino , Micrognatismo/genética , Pescoço/anormalidades , Proteína Reelina , Síndrome
12.
Mol Psychiatry ; 26(6): 2013-2024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32346159

RESUMO

Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Drosophila , Drosophila melanogaster , Haploinsuficiência/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
13.
Am J Hum Genet ; 103(4): 621-630, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290154

RESUMO

Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels.


Assuntos
Ativação do Canal Iônico/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Canais de Potássio/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Simulação de Dinâmica Molecular
14.
Am J Hum Genet ; 102(1): 44-57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276004

RESUMO

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epilepsia/genética , Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Sequência de Aminoácidos , Animais , Comportamento Animal , Criança , Pré-Escolar , Dendritos/metabolismo , Feminino , Proteínas de Ligação ao GTP/química , Dosagem de Genes , Células HEK293 , Humanos , Masculino , Fenótipo , Sinapses/patologia , Proteínas Supressoras de Tumor/química
15.
Am J Hum Genet ; 102(3): 468-479, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429572

RESUMO

Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Mutação/genética , Pescoço/anormalidades , Subunidades Proteicas/genética , Adolescente , Sequência de Aminoácidos , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Fácies , Feminino , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Fenótipo , Fatores de Transcrição
16.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
17.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Assuntos
Haploinsuficiência/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Fatores de Transcrição NFI/genética , Adolescente , Adulto , Animais , Córtex Cerebral/patologia , Criança , Pré-Escolar , Códon sem Sentido/genética , Estudos de Coortes , Corpo Caloso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
18.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394990

RESUMO

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Heterogeneidade Genética , Atrofia Muscular/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Proteína cdc42 de Ligação ao GTP/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Modelos Moleculares , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Estrutura Secundária de Proteína , Índice de Gravidade de Doença , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Am J Hum Genet ; 102(5): 744-759, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656859

RESUMO

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.


Assuntos
Transtorno Autístico/genética , Ataxia Cerebelar/genética , Genes Dominantes , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Adolescente , Adulto , Idoso de 80 Anos ou mais , Alelos , Animais , Transtorno Autístico/complicações , Encéfalo/patologia , Ataxia Cerebelar/complicações , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Feminino , Teste de Complementação Genética , Humanos , Deficiência Intelectual/complicações , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Síndrome , Peixe-Zebra/genética
20.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA