Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771138

RESUMO

Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method's correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070-0.0498 µg kg-1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 µg kg-1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.


Assuntos
Grão Comestível/química , Monitoramento Ambiental , Análise de Alimentos , Contaminação de Alimentos/análise , Tálio/análise , Verduras/química , Espectrometria de Massas , República da Coreia
2.
Environ Sci Pollut Res Int ; 31(4): 6243-6257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147248

RESUMO

The okadaic acid (OA)-group toxins, including OA, dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), and dinophysistoxin-3 (DTX3), cause diarrheic shellfish poisoning in humans. To manage OA-group toxins more strictly, Korean regulations were recently revised to consider OA, DTX1, DTX2, and DTX3 combined. Thus, our study characterized the occurrence of OA, DTX1, DTX2, and DTX3 in seafood distributed across South Korea, and a risk assessment of seafood consumption was conducted. Two hundred and seventeen samples from 16 bivalve and 7 non-bivalve species collected from three representative coastal areas in 2021 were analyzed via liquid chromatography-tandem mass spectrometry. OA, DTX1, and DTX3 were detected in 2.3%, 4.1%, and 9.2% of the examined samples, with positive mean levels of 11.3, 16.4, and 40.9 µg/kg, respectively. DTX2 was not detected in any of the samples. At least one OA-group toxin was detected in the bivalve samples, including blood clams, pan shells, hard clams, mussels, and scallops, whereas none were detected in non-bivalves. The estimated acute exposure to OA-group toxins through the intake of seafood in the Korean population and consumer groups was low, ranging from 24.7 to 74.5% of the recommended acute reference dose (ARfD) of 0.33 µg OA equivalents/kg body weight. However, for the scallop consumers aged 7-12 years, acute exposure to OA-group toxins exceeded the ARfD, indicating a possible health risk. These results suggest that including DTX3 in the new regulatory limits is appropriate to protect Korean seafood consumers from exposure to OA-group toxins.


Assuntos
Bivalves , Toxinas Marinhas , Animais , Humanos , Ácido Okadáico , Bivalves/química , Alimentos Marinhos/análise , Medição de Risco , Piranos
3.
Toxins (Basel) ; 15(7)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37505729

RESUMO

Deoxynivalenol and nivalenol are major type B trichothecenes and the most frequently occurring mycotoxins worldwide. Their 3-ß-d-glucoside forms have recently become a safety management issue. These glucoside conjugates are converted back to the parent toxins during human digestion, but studies to confirm their bioavailability are lacking. In this study, a risk assessment was performed considering the bioavailability of glucoside conjugates. A literature review was conducted to compile the existing bioavailability studies of glucoside conjugates, and three exposure scenarios considering bioavailability were established. As a result of a risk assessment using deterministic and probabilistic methods, both the deoxynivalenol and nivalenol groups had safe levels of tolerable daily intake percentage (TDI%), not exceeding 100%. The TDI% for the nivalenol group was approximately 2-3 times higher than that for the deoxynivalenol group. Notably, infants showed higher TDI% than adults for both toxin groups. By food processing type, the overall TDI% was highest for raw material, followed by simple-processed and then fermented-processed. Since glucoside conjugates can be converted into parent toxins during the digestion process, a risk assessment considering bioavailability allows the more accurate evaluation of the risk level of glucoside conjugates and can direct their safety management in the future.


Assuntos
Glucosídeos , Micotoxinas , Lactente , Adulto , Humanos , Disponibilidade Biológica , Contaminação de Alimentos/análise , Grão Comestível/química , Micotoxinas/análise , República da Coreia , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA