RESUMO
Regulatory T cells (Treg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal Treg cells to regulate helper T17 cell (TH17 cell) immunity. Selectively increased intestinal TH17 cell responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+CD62Llo Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a new Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Assuntos
Interleucina-27 , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Tolerância Imunológica , Imunidade Celular , Células Th17RESUMO
The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.
Assuntos
Infecções por Arenaviridae/imunologia , Diferenciação Celular , Proteína 2 Inibidora de Diferenciação/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Células Th1/fisiologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Feminino , Centro Germinativo/imunologia , Proteína 2 Inibidora de Diferenciação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Interferente Pequeno/genética , Células Th1/parasitologia , Células Th1/virologiaRESUMO
T cells are crucial to generate an effective response against numerous invading microbial pathogens and play a pivotal role in tumor surveillance and elimination. However, unwanted T cell activation can also lead to deleterious immune-mediated inflammation and tissue damage. To ensure that an optimal T cell response can be established, each step, beginning from T cell development in the thymus to their activation and function in the periphery, is tightly regulated by many transcription factors and epigenetic regulators including microRNAs (miRNAs). Here, we first summarize recent progress in identifying major immune regulatory miRNAs in controlling the differentiation and function of distinct T cell subsets. Moreover, as emerging evidence has demonstrated that miRNAs can impact T cell immunity through targeting both immune- and non-immune cell populations that T cells closely interact with, the T cell-extrinsic role of miRNAs in regulating different aspects of T cell biology is also addressed. Finally, we discuss the complex nature of miRNA-mediated control of T cell immunity and highlight important questions that remain to be further investigated.
Assuntos
MicroRNAs , Diferenciação Celular , Humanos , Inflamação , Ativação Linfocitária , MicroRNAs/genética , Subpopulações de Linfócitos TRESUMO
MicroRNA (miRNA)-dependent regulation of gene expression confers robustness to cellular phenotypes and controls responses to extracellular stimuli. Although a single miRNA can regulate expression of hundreds of target genes, it is unclear whether any of its distinct biological functions can be due to the regulation of a single target. To explore in vivo the function of a single miRNA-mRNA interaction, we mutated the 3' UTR of a major miR-155 target (SOCS1) to specifically disrupt its regulation by miR-155. We found that under physiologic conditions and during autoimmune inflammation or viral infection, some immunological functions of miR-155 were fully or largely attributable to the regulation of SOCS1, whereas others could be accounted only partially or not at all by this interaction. Our data suggest that the role of a single miRNA-mRNA interaction is dependent on cell type and biological context.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T Reguladores/imunologia , Regiões 3' não Traduzidas/genética , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Perfilação da Expressão Gênica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/transplante , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Mutação , RNA Mensageiro/genética , Proteína 1 Supressora da Sinalização de CitocinaRESUMO
During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure's lateral elements (LEs). While the components of the mammalian chromosome axis/LE-including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2-are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.
Assuntos
Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/metabolismo , Microscopia/métodos , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Masculino , Mamíferos/genética , Meiose , Camundongos , Espermatócitos/metabolismo , Coloração e Rotulagem , Complexo Sinaptonêmico/metabolismoRESUMO
miR-23â¼27â¼24 was recently implicated in restricting Th2 immunity, as well as the differentiation and function of other effector T cell lineages. Interestingly, miR-24, unlike other family members, actually promotes Th1 and Th17 responses. In this article, we show that miR-24 drives the production of IFN-γ and IL-17 in T cells at least in part through targeting TCF1, a transcription factor known for its role in limiting Th1 and Th17 immunity. Surprisingly, whereas TCF1 was previously shown to promote Th2 responses through inducing GATA3, enforced TCF1 expression in miR-24-overexpressing T cells led to further downregulation of IL-4 and GATA3 expression, suggesting miR-24-mediated inhibition of Th2 immunity cannot be attributed to TCF1 repression by miR-24. Together, our data demonstrate a novel miR-24-TCF1 pathway in controlling effector cytokine production by T cells and further suggest miR-24 could function as a key upstream molecule regulating TCF1-mediated immune responses.
Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Diferenciação Celular , Citocinas/biossíntese , Citocinas/imunologia , Regulação para Baixo , Fator de Transcrição GATA3/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Ativação Linfocitária , Camundongos , Transdução de Sinais , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologiaRESUMO
IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.
Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Interferon gama/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasmose/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamação/imunologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Proteínas com Domínio T/imunologia , Linfócitos T Reguladores/citologia , Células Th1/citologia , Células Th1/imunologiaRESUMO
The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3delta but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Proteínas Virais/metabolismoRESUMO
Major histocompatibility complex class I (MHC-I) molecules bind antigens in the endoplasmic reticulum (ER) and deliver them to the cell surface for immune surveillance of viruses and tumors. Whereas key steps of MHC-I assembly and its acquisition of peptides in the ER are relatively well defined, little is known about how MHC-I molecules leave the ER for cell surface expression. Here, we show that ER export of human classical MHC-I molecules (HLA-A/-B/-C) is regulated by their C-terminal single amino acid, valine or alanine. These amino acids, conserved in nearly all known human MHC-I alleles, serve as the ER export signal by binding to the Sec23/24 complex, a structural component of coat protein complex II (COPII) vesicles that mediate ER-to-Golgi trafficking. Together, our results strongly suggest that ER export of human classical MHC-I molecules can occur via a receptor-mediated process dictated by a highly conserved ER export signal.
Assuntos
Aminoácidos/metabolismo , Retículo Endoplasmático/metabolismo , Complexo Principal de Histocompatibilidade/fisiologia , Alanina/metabolismo , Sequência de Aminoácidos , Complexo I de Proteína do Envoltório/metabolismo , Antígeno HLA-A2/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiologiaRESUMO
Aberrantly folded proteins in the endoplasmic reticulum (ER) are rapidly removed into the cytosol for degradation by the proteasome via an evolutionarily conserved process termed ER-associated protein degradation (ERAD). ERAD of a subset of proteins requires Derlin-1 for dislocation into the cytosol; however, the molecular function of Derlin-1 remains unclear. Human cytomegalovirus US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules for immune evasion. Because US11 binds to both MHC-I molecules and Derlin-1 via its luminal and transmembrane domains (TMDs), respectively, the major role of US11 has been proposed to simply be delivery of MHC-I molecules to Derlin-1. Here, we directly tested this proposal by generating a hybrid MHC-I molecule, which contains the US11 TMD, and thus can associate with Derlin-1 in the absence of US11. Intriguingly, this MHC-I hybrid was rapidly degraded in a Derlin-1- and proteasome-dependent manner. Similarly, the vesicular stomatitis virus G protein, otherwise expressed at the cell surface, was degraded via Derlin-1-dependent ERAD when its TMD was replaced with that of US11. Thus, forced interaction of cell surface proteins with Derlin-1 is sufficient to induce their degradation via ERAD. Taken together, these results suggest that the main role of US11 is to recruit MHC-I molecules to Derlin-1, which then mediates the dislocation of MHC-I molecules into the cytosol for degradation.
Assuntos
Citosol/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Regulatory T (Treg) cells are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, here we show that IL-27 is specifically produced by intestinal Treg cells to regulate Th17 immunity. Selectively increased intestinal Th17 responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+TCF1+ Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a novel Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue, and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
RESUMO
Natural killer T (NKT) cells may play a crucial role in controlling viral infection by bridging the innate and adaptive immune systems. These cells are activated by lipids presented by CD1d molecules, which are structurally homologous to major histocompatibility complex class I (MHC-I) molecules. Although human cytomegalovirus (HCMV) can avoid T cell recognition by down-regulating MHC-I-mediated antigen presentation, it remains unknown whether it can also interfere with CD1d-mediated lipid presentation. Here, we show that CD1d is resistant to rapid degradation induced by the HCMV gene products US2 and US11, which cause dislocation of MHC-I molecules from the endoplasmic reticulum (ER) to the cytosol for destruction by proteasomes. The resistance of CD1d to US11 is mainly due to the short cytosolic tail of CD1d; a hybrid CD1d protein, whose cytosolic tail was replaced with that of HLA-A2.1, was efficiently degraded by US11. Finally, we found that HCMV infection did not significantly influence the cell surface expression of CD1d. Thus, these results suggest that antigen presentation by CD1d is largely unaffected by the multiple immune-modulating functions of HCMV.
Assuntos
Antígenos CD1d/metabolismo , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Apresentação de Antígeno , Antígenos CD1d/imunologia , Membrana Celular/metabolismo , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Células HeLa , Humanos , Imunoprecipitação , Proteínas de Ligação a RNA/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais/imunologiaRESUMO
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.
Assuntos
Proteínas do Capsídeo/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Ligação a RNA/imunologia , Linfócitos T/imunologia , Proteínas Virais/imunologia , Proteínas do Capsídeo/metabolismo , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/metabolismo , Regulação da Expressão Gênica/imunologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Transporte Proteico/imunologia , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Proteínas Virais/metabolismoRESUMO
The development of cancer is a complex and dynamically regulated multiple-step process that involves many changes in gene expression. Over the last decade, microRNAs (miRNAs), a class of short regulatory non-coding RNAs, have emerged as key molecular effectors and regulators of tumorigenesis. While aberrant expression of miRNAs or dysregulated miRNA-mediated gene regulation in tumor cells have been shown to be capable of directly promoting or inhibiting tumorigenesis, considering the well-reported role of the immune system in cancer, tumor-derived miRNAs could also impact tumor growth through regulating anti-tumor immune responses. Here, we discuss howmiRNAs can function as central mediators that influence the crosstalk between cancer and the immune system. Moreover, we also review the current progress in the development of novel experimental approaches for miRNA target identification that will facilitate our understanding of miRNA-mediated gene regulation in not only human malignancies, but also in other genetic disorders.
RESUMO
CD4+ Foxp3+ T regulatory (Treg) cells are key players in preventing lethal autoimmunity. Tregs undertake differentiation processes and acquire diverse functional properties. However, how Treg's differentiation and functional specification are regulated remains incompletely understood. Here, we report that gradient expression of TCF1 and LEF1 distinguishes Tregs into three distinct subpopulations, particularly highlighting a subset of activated Treg (aTreg) cells. Treg-specific ablation of TCF1 and LEF1 renders the mice susceptible to systemic autoimmunity. TCF1 and LEF1 are dispensable for Treg's suppressive capacity but essential for maintaining a normal aTreg pool and promoting Treg's competitive survival. As a consequence, the development of T follicular regulatory (Tfr) cells, which are a subset of aTreg, is abolished in TCF1/LEF1-conditional knockout mice, leading to unrestrained T follicular helper (Tfh) and germinal center B cell responses. Thus, TCF1 and LEF1 act redundantly to control the maintenance and functional specification of Treg subsets to prevent autoimmunity.
Assuntos
Doenças Autoimunes/prevenção & controle , Autoimunidade/imunologia , Centro Germinativo/imunologia , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Follicular helper T (TFH) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating TFH cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated TFH cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced TFH cell responses. Mechanistically, miR-23~27~24 clusters coordinately control TFH cells through targeting a network of genes that are crucial for TFH cell biology. Among them, thymocyte selection-associated HMG-box protein (TOX) was identified as a central transcription regulator in TFH cell development. TOX is highly up-regulated in both mouse and human TFH cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in TFH cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal TFH cell responses for resultant humoral immunity.
Assuntos
Diferenciação Celular/genética , Imunidade Humoral/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T/imunologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
Bacillus anthracis, the aetiological agent of anthrax, has been taxonomically classified with the Bacillus cereus group, which comprises B. cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. Although the pathogenesis and ecological manifestations may be different, B. anthracis shares a high degree of DNA sequence similarity with its group member species. As a result, the discrimination of B. anthracis from its close relatives in the B. cereus group is still quite difficult. Suppression subtractive hybridization (SSH) was performed to search for genomic differences between a B. anthracis Korean isolate CR and the most closely related B. cereus type strain KCTC 3624(T). Two-hundred and five B. anthracis CR clones obtained by SSH underwent Southern hybridization, and comparative sequences were analysed using the blast program from the National Center for Biotechnology Information (NCBI). Subsequently, primer sets based on the glycosyltransferase group 1 family protein gene specific to B. anthracis were designed from the sequences of subtracted clones, and their specificities were evaluated using eight B. anthracis, 33 B. cereus, 10 B. thuringiensis, six B. mycoides, one B. pseudomycoides, one B. weihenstephanensis and 19 strains from 11 other representative Bacillus species. PCR primers specific for the glycosyltransferase group 1 family protein gene did not amplify the desired products from any of the Bacillus strains under examination, except B. anthracis alone. These findings may be useful in the future development of efficient diagnostic tools for the rapid identification of B. anthracis from other members of the B. cereus group.
Assuntos
Bacillus anthracis/classificação , Bacillus cereus/classificação , Técnicas de Tipagem Bacteriana , Marcadores Genéticos/genética , Glicosiltransferases/genética , Animais , Antraz/diagnóstico , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Bacillus anthracis/isolamento & purificação , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Primers do DNA , Biblioteca Gênica , Glicosiltransferases/metabolismo , Humanos , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Especificidade da EspécieRESUMO
Reciprocal interactions between B and follicular T helper (Tfh) cells orchestrate the germinal center (GC) reaction, a hallmark of humoral immunity. Abnormal GC responses could lead to the production of pathogenic autoantibodies and the development of autoimmunity. Here we show that miR-146a controls GC responses by targeting multiple CD40 signaling pathway components in B cells; by contrast, loss of miR-146a in T cells does not alter humoral responses. However, specific deletion of both miR-146a and its paralog, miR-146b, in T cells increases Tfh cell numbers and enhanced GC reactions. Thus, our data reveal differential cell-intrinsic regulations of GC B and Tfh cells by miR-146a and miR-146b. Together, members of the miR-146 family serve as crucial molecular brakes to coordinately control GC reactions to generate protective humoral responses without eliciting unwanted autoimmunity.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , MicroRNAs/genética , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/biossíntese , Autoimunidade/genética , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Diferenciação Celular , Regulação da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/efeitos dos fármacos , Imunidade Humoral/genética , Interleucina-4/farmacologia , Camundongos , Camundongos Transgênicos , MicroRNAs/imunologia , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacosRESUMO
MicroRNAs (miRs) are tightly regulated in the immune system, and aberrant expression of miRs often results in hematopoietic malignancies and autoimmune diseases. Previously, it was suggested that elevated levels of miR-27 in T cells isolated from patients with multiple sclerosis facilitate disease progression by inhibiting Th2 immunity and promoting pathogenic Th1 responses. Here we have demonstrated that, although mice with T cell-specific overexpression of miR-27 harbor dysregulated Th1 responses and develop autoimmune pathology, these disease phenotypes are not driven by miR-27 in effector T cells in a cell-autonomous manner. Rather, dysregulation of Th1 responses and autoimmunity resulted from a perturbed Treg compartment. Excessive miR-27 expression in murine T cells severely impaired Treg differentiation. Moreover, Tregs with exaggerated miR-27-mediated gene regulation exhibited diminished homeostasis and suppressor function in vivo. Mechanistically, we determined that miR-27 represses several known as well as previously uncharacterized targets that play critical roles in controlling multiple aspects of Treg biology. Collectively, our data show that miR-27 functions as a key regulator in Treg development and function and suggest that proper regulation of miR-27 is pivotal to safeguarding Treg-mediated immunological tolerance.
Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Tolerância Imunológica , MicroRNAs/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Células Th1/imunologia , Células Th2/imunologiaRESUMO
Long-lived plasma cells (PCs) in the bone marrow (BM) are a critical source of antibodies after infection or vaccination, but questions remain about the factors that control PCs. We found that systemic infection alters the BM, greatly reducing PCs and regulatory T (Treg) cells, a population that contributes to immune privilege in the BM. The use of intravital imaging revealed that BM Treg cells display a distinct behavior characterized by sustained co-localization with PCs and CD11c-YFP+ cells. Gene expression profiling indicated that BM Treg cells express high levels of Treg effector molecules, and CTLA-4 deletion in these cells resulted in elevated PCs. Furthermore, preservation of Treg cells during systemic infection prevents PC loss, while Treg cell depletion in uninfected mice reduced PC populations. These studies suggest a role for Treg cells in PC biology and provide a potential target for the modulation of PCs during vaccine-induced humoral responses or autoimmunity.