Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Gene ; 517(2): 184-90, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23296058

RESUMO

Microcephalin 1 (MCPH1) has a crucial role in the DNA damage response by promoting the expression of checkpoint kinase 1 (CHK1) and breast cancer susceptibility gene 1 (BRCA1). MCPH1 containing BRCT domain has been suggested as a tumor suppressor in breast and ovarian cancers. We analyzed the effect of both protein expression and MCPH1 polymorphisms in breast cancer patients. Low nuclear expression of microcephalin was present in 52.4% of breast cancers and was associated with allele T in rs2912010 (p=0.046). However, cytoplasmic microcephalin expression increased with increasing grade (p=0.010). An association between low nucleus microcephalin expression and allele T was identified in rs2912010 (p=0.046). After data analysis, allele distribution of the MCPH1 polymorphisms was not different between breast cancer patients and healthy controls. But the polymorphism was associated with negative status for ER (rs2912010/C2302T; p=0.032, rs1057090/C2358T; p=0.027, rs2912016/C2494A; p=0.024), and allele T in both rs2912010 and rs1057090 was associated with increasing tumor grade (rs2912010; p=0.040, rs1057090; p=0.043) in breast cancer. We are first to report that association of MCPH1 protein expression and its polymorphisms in breast cancer. The MCPH1 polymorphisms and protein expression were associated with tumorigenesis in breast cancer and may be a useful biomarker for identification of the aggressive types of breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Humanos , Pessoa de Meia-Idade , Receptores de Estrogênio/genética , República da Coreia
3.
J Biol Chem ; 283(7): 3731-42, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18079115

RESUMO

Cisplatin is one of the most effective and widely used chemotherapeutic agents. However, one of the most salient limitations to the clinical application of cisplatin is the acquired or intrinsic drug resistance exhibited by some tumors. In the present study, we have assessed the potential of an intracellular energy balancing system as a target for augmentation of cisplatin sensitivity in tumors. AMP-activated protein kinase (AMPK) regulates the energy balance system by monitoring intracellular energy status. Here we demonstrate that AMPK is rapidly activated by cisplatin in AGS and HCT116 cancer cells. The inhibition of AMPK in those cells and in xenografts of HCT116 resulted in a remarkable increase in cisplatin-induced apoptosis, which was associated with hyper-induction of the tumor suppressor p53. We further showed that ERK, but not ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) kinases, was involved in the hyper-induction of p53 by the inhibition of cisplatin-induced AMPK. By way of contrast, cisplatin did not induce AMPK activation in HeLa cells, which appear to have a relatively high sensitivity to cisplatin-induced cytotoxicity, but expression of the constitutive active form of AMPK in HeLa cells resulted in a significant increase of cell viability after cisplatin treatment. Collectively, our data suggest that AMPK performs a pivotal function for protection against the cytotoxic effect of cisplatin, thereby implying that AMPK is one of the cellular factors determining the cellular sensitivity to cisplatin. On the basis of these observations, we propose that a strategy combining cisplatin and AMPK inhibition could be developed into a novel chemotherapeutic modality.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/biossíntese , Proteínas Quinases Ativadas por AMP , Animais , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA