Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202401388, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38589725

RESUMO

The development of site-selective functionalization of N-heteroarenes is highly desirable in streamlined synthesis. In this context, direct amination of pyridines stands as an important synthetic methodology, with particular emphasis on accessing 4-aminopyridines, a versatile pharmacophore in medicinal chemistry. Herein, we report a reaction manifold for the C4-selective amination of pyridines by employing nucleophilic substitution of hydrogen (SNH). Through 4-pyridyl pyridinium salt intermediates, 4-aminopyridine products are obtained in reaction with aqueous ammonia without intermediate isolation. The notable regioselectivity was achieved by the electronic tuning of the external pyridine reagents along with the maximization of polarizability in the proton elimination stage. Further mechanistic investigations provided a guiding principle for the selective C-H pyridination of additional N-heteroarenes, presenting a strategic avenue for installation of diverse functional groups.

2.
J Am Chem Soc ; 144(22): 10064-10074, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621341

RESUMO

Intramolecular alkyne hydroamidation represents a straightforward approach for the access to synthetically valuable cyclic enamides. Despite some advances made in this realm, the ability to attain a precise regiocontrol still remains challenging, especially for endo cyclization that leads to six-membered and larger azacyclic rings. Herein, we report a NiH-catalyzed intramolecular hydroamidation of alkynyl dioxazolones that allows for an excellent endo selectivity, thus affording a range of six- to eight-membered endocyclic enamides with a broad scope. Mechanistic investigations revealed that Ni(I) catalysis is operative in the current system, proceeding via regioselective syn-hydronickelation, alkenylnickel E/Z isomerization, and Ni-centered inner-sphere nitrenoid transfer. In particular, the key alkenylnickel isomerization step, which previously lacked mechanistic understandings, was found to take place through the η2-vinyl transition state. The synthetic value of this protocol was demonstrated by diastereoselective modifications of the obtained endocyclic enamides to highly functionalized δ-lactam scaffolds.


Assuntos
Alcinos , Catálise , Ciclização , Isomerismo , Estereoisomerismo
3.
J Am Chem Soc ; 144(7): 2885-2892, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138104

RESUMO

Synthesis of heteroaryl amines has been an important topic in organic chemistry because of their importance in small-molecule discovery. In particular, 2-aminopyrimidines represent a highly privileged structural motif that is prevalent in bioactive molecules, but a general strategy to introduce the pyrimidine C2-N bonds via direct functionalization is elusive. Here we describe a synthetic platform for site-selective C-H functionalization that affords pyrimidinyl iminium salt intermediates, which then can be transformed into various amine products in situ. Mechanism-based reagent design allowed for the C2-selective amination of pyrimidines, opening the new scope of site-selective heteroaryl C-H functionalization. Our method is compatible with a broad range of pyrimidines with sensitive functional groups and can access complex aminopyrimidines with high selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA