Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Small ; 20(6): e2305272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37702152

RESUMO

The magnetomechanical actuation of micropillars is developed for the contactless manipulation of miniaturized actuators and microtextured surfaces. Anisotropic geometry of micropillars can significantly enhance the magnetic actuation compared with their isotropic counterparts by directional stress distributions. However, this strategy is not viable for triangular micropillars owing to insufficient anisotropy. In this study, a significant improvement in the magnetic actuation of triangular micropillars using composite magnetic particles is reported. A minute and optimal amount of hard magnetic gamma-ferrite nanorods are hybridized with soft magnetic iron microspheres to generate synergistic effects of magnetic coupling and percolation phenomenon on the magnetic actuation of polymer composites. The addition of 1 wt% face-centered cubic-phased gamma-ferrite nanorods suppresses the magnetic coupling interference of body-centered cubic-phased iron microspheres. Furthermore, the nanorods reduce the percolation threshold by participating in the percolation of the microspheres. A systematic compositional study on the magnetization and magnetorheological properties reveals that the coupling effect dominates the percolation effect at a low magnetic field, whereas the percolation effect governs the magnetic actuation at a high magnetic field. This hybrid approach can help in designing material constituents for effective magnetic actuators and robotic systems that can sensitively respond to an external magnetic field.

2.
Langmuir ; 37(7): 2298-2311, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33556246

RESUMO

Core-shell type poly(diphenylamine)-coated magnetite (Fe3O4-PDPA) microspheres were designed and adopted as a novel actively tunable smart material which is responsive under both electric and magnetic fields. Their morphology, chemical structure, crystalline structure, and thermal properties were characterized using scanning electron microscopy, transmission electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and a thermal gravimetric analyzer. Their magnetic and dielectric properties were determined using vibrating-sample magnetometer and an LCR meter, respectively. They were dispersed in silicone oil and their electrorheological (ER) and magnetorheological (MR) responses under the electric and magnetic fields, respectively, were examined. The formation of chain structure of Fe3O4-PDPA based E/MR fluid under the application of electric field or magnetic field was observed by an optical microscopy and the sedimentation stability was observed by a Turbiscan optical analyzer system. It was observed that the yield stress, ER efficiency, and leakage current density increased with an increase in the particle concentration, while the slope of the electric field-dependent yield stress decreased. Several models such as the Bingham model, Herschel-Bulkley model, and Cho-Choi-Jhon equations were used to describe the shear stress curves of the ER fluid; the curves fitted well. For the dielectric properties, the two types of ER fluids tested displayed the same relaxation time and distribution; however, the one with the higher concentration had a higher dielectric constant and polarizability. The Fe3O4-PDPA based MR fluid (10 vol %) exhibited typical MR properties. In addition, the Herschel-Bulkley model matched well with the shear stress curves under a magnetic field.

3.
Langmuir ; 36(26): 7706-7714, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517475

RESUMO

Magnetorheological (MR) fluids have been successfully utilized in versatile fields but are still limited by their relatively inferior long-term dispersion stability. Herein, bio-inspired passion fruit-like Fe3O4@C nanospheres were fabricated via a simple hydrothermal and calcination approach to tackle the settling challenge. The unique structures provide sufficient active interfaces for the penetration of carrier mediums, leading to preferable wettability between particles and medium oils. Compared with the bare Fe3O4 nanoparticle suspension, the resulting Fe3O4@C nanosphere-based MR fluid exhibits desirable stability and relatively low field-off viscosity even at a high particle concentration up to 35 vol %.

4.
Soft Matter ; 15(17): 3473-3486, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968927

RESUMO

The characteristics of an electrorheological (ER) fluid, as a class of smart soft matter, can be actively and accurately tuned between a liquid- and a solid-like phase by the application of an electric field. ER materials used in ER fluids are electrically polarizable particles, which are attracting considerable attention in addition to further research. This perspective reports the latest ER materials along with their rheological understanding and provides a forward-looking summary of the potential future applications of ER technology.

5.
J Nanosci Nanotechnol ; 19(7): 3905-3910, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30764949

RESUMO

Biopolymeric Arabic gum (AG) coated carbonyl iron (CI) particles were synthesized using a solvent casting process, and then their coating was confirmed using scanning electron microscopy analysis. Thermal property and chemical structure of the produced AG coated CI particles were investigated by thermalgravimetric analysis and Fourier transform infrared spectroscopy. In addition, from the measurement using vibration sample magnetometer, magnetic properties including saturation magnetization were also observed. The magnetorheological (MR) fluid was prepared by dispersing CI/AG particles in silicone oil and then its typical MR behaviors of shear stress and shear viscosity were compared to those of the pure CI suspension. Sedimentation stability of the CI/AG based MR suspension was observed to be improved compared to that of the pure CI suspension according to the Turbiscan test.

6.
J Environ Manage ; 231: 1127-1134, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602237

RESUMO

Water shut off and performance control in oil reservoirs involve many techniques both for reducing the water cut and for enhancing oil production with the aim of making it economical and environmental friendly. Therefore, suitable nanoparticles for injection in an oil reservoir regarding nano size, spherical morphology, and better dispersibility were synthesized by one step, facile, and inexpensive method and then characterized in this work. In addition, new magnetorheological (MR) fluids based on the crude oil and the nanoparticles were developed, and the analysis of their rheological properties carried out by rotational and oscillation tests showed their ability of forming gel-like structure. Furthermore, from the core flooding experiment investigated, values of both resistance factor and residual resistance factor showed that the MR fluids exhibit a solid-like form with the magnetical field applied in oil reservoirs, thereby reducing the water cut.


Assuntos
Nanopartículas , Petróleo , Campos de Petróleo e Gás , Suspensões , Água
7.
Langmuir ; 34(8): 2807-2814, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29376371

RESUMO

The magnetorheological (MR) performance of suspensions based on core-shell-structured foamed polystyrene (PSF)/Fe3O4 particles was investigated by using a vibrating sample magnetometer and a rotational rheometer. Core-shell-structured polystyrene (PS)/Fe3O4 was synthesized by using the Pickering-emulsion polymerization method in which Fe3O4 nanoparticles were added as a solid surfactant. Foaming the PS core in PS/Fe3O4 particles was carried out by using a supercritical carbon dioxide (scCO2) fluid. The density was measured by a pycnometer. The densities of PS/Fe3O4 and PSF/Fe3O4 particles were significantly lowered from that of the pure Fe3O4 particle after Pickering-emulsion polymerization and foaming treatment. All tested suspensions displayed similar MR behaviors but different yield strengths. The important parameter that determined the MR performance was not the particle density but rather the surface density of Fe3O4 on the PS core surface. The morphology was observed by scanning electron microscopy and transmission electron microscopy. Most Fe3O4 particles stayed on the surface of PS/Fe3O4 particles, making the surface topology bumpy and rough, which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to examine the sedimentation properties of different particle suspensions. The suspensions of PS/Fe3O4 and PSF/Fe3O4 showed remarkably improved stability against sedimentation, much better than the bare Fe3O4 particle suspension because of the reduced density mismatch between the nanoparticles and the carrier medium as well as the surface topology change.

8.
Molecules ; 23(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400169

RESUMO

Electro-responsive smart electrorheological (ER) fluids consist of electrically polarizing organic or inorganic particles and insulating oils in general. In this study, we focus on various conducting polymers of polyaniline and its derivatives and copolymers, along with polypyrrole and poly(ionic liquid), which are adopted as smart and functional materials in ER fluids. Their ER characteristics, including viscoelastic behaviors of shear stress, yield stress, and dynamic moduli, and dielectric properties are expounded and appraised using polarizability measurement, flow curve testing, inductance-capacitance-resistance meter testing, and several rheological equations of state. Furthermore, their potential industrial applications are also covered.


Assuntos
Condutividade Elétrica , Polímeros/análise , Polímeros/química , Reologia , Algoritmos , Fenômenos Químicos , Modelos Teóricos
9.
Soft Matter ; 12(11): 2816-25, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26907953

RESUMO

Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

10.
J Nanosci Nanotechnol ; 16(3): 2632-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455680

RESUMO

Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.


Assuntos
Bismuto/química , Nanopartículas , Silanos/química , Ítrio/química , Óxido de Zinco/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
11.
Soft Matter ; 11(4): 646-54, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25515644

RESUMO

The Pickering emulsion process is an important and interesting way of forming hybrid soft matter particles stabilized by solid particles as surfactants instead of the extensive use of conventionally available organic surfactant molecules. This Highlight briefly reviews stimuli-responsive polymer/inorganic hybrid materials fabricated by Pickering emulsion polymerization along with the rheological characteristics of their electrorheological and magnetorheological smart fluids under electric and magnetic fields, respectively.

12.
Langmuir ; 30(7): 1729-34, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24512519

RESUMO

Monodisperse core-shell-structured poly(styrene-co-butyl acrylate-co-[2-(methacryloxy)ethyl] trimethylammonium chloride)/silica (PSBM/SiO2) nanoparticles were applied as new electrorheological (ER) materials in which the particles were dispersed in an insulating oil. These nanoparticles were prepared by the consecutive precipitation of cetyltrimethylammonium bromide and negatively charged tetraethylorthosilicate onto the cationic surfaces of PSBM colloidal particles. The successful deposition of the shell phase of the particles and their morphology was examined by transmission and scanning electron microscopy. Their ER properties were studied with a rotational rheometer under different shear modes: controlled shear rate, steady shear under constant shear rate, and creep test. The silica shell allowed the PSBM/SiO2 particles to exhibit typical ER performance under an applied electric field. The dielectric spectra of the PSBM/SiO2-based ER fluid were also recorded using an LCR meter, which was correlated to the ER performance of the ER fluid.


Assuntos
Resinas Acrílicas/química , Técnicas Eletroquímicas , Nanopartículas/química , Poliestirenos/química , Dióxido de Silício/química , Estrutura Molecular , Tamanho da Partícula , Reologia , Propriedades de Superfície , Suspensões/química
13.
Soft Matter ; 10(35): 6601-8, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25068905

RESUMO

Graphene oxide (GO), a graphene-related material containing oxygen-functional groups, has attracted considerable attention because of its strongly hydrophilic behavior and potential use in GO-hybrid composites. We put our focus on the fabrication and rheological characteristics of GO-based electrorheological and magnetorheological smart fluids under electric and magnetic fields, respectively in this Highlight. A brief perspective on the significant role of GO in tribology and the amphiphilic characteristics of Pickering emulsions are also included.

14.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673216

RESUMO

In this study, composite particles of rGO/CoFe2O4 were synthesized using a solvothermal method to fabricate a low-density magnetorheological (MR) material with enhanced sedimentation stability. The morphology and crystallographic features of rGO/CoFe2O4 were characterized via SEM, TEM, and XRD, and its magnetic properties were tested using VSM. The MR fluid was formulated by blending rGO/CoFe2O4 particles into silicone oil. Under different magnet strengths (H), a rotational rheometer was used to test its MR properties. Typical MR properties were observed, including shear stress, viscosity, storage/loss modulus, and dynamic yield stress (τdy) following the Herschel-Bulkley model reaching 200 Pa when H is 342 kA/m. Furthermore, the yield stress of the MR fluid follows a power law relation as H increases and the index changes from 2.0 (in the low H region) to 1.5 (in the high H region). Finally, its MR efficiency was calculated to be about 104% at H of 342 kA/m.

15.
Langmuir ; 29(16): 4959-65, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23534530

RESUMO

Core-shell-structured magnetic polystyrene (PS)/inorganic particles were fabricated by Pickering emulsion polymerization using nanosized Fe2O3 particles as a solid stabilizer. Scanning electron microscopy and transmission electron microscopy confirmed the synthesized PS/Fe2O3 particles to be comprised of a PS surface coated with Fe2O3 nanoparticles. The chemical structure of the composite nanospheres was characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The thermal properties of composite nanospheres and corresponding pure polymer were examined by thermogravimetric analysis. The rheological properties of the core-shell-structured magnetic PS/inorganic particles dispersed in silicone oil were investigated under an external magnetic field strength using a rotational rheometer. The particles with extremely lower density than common magnetic particles exhibited solid-like magnetorheological phase characteristics, and the flow curves were fitted to the Cho-Choi-Jhon model of the rheological equation of state.

16.
J Nanosci Nanotechnol ; 13(6): 4279-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862487

RESUMO

To prepare electrophoretic black particles with good suspension stability in the low dielectric medium for the electrophoretic display application, black pigment (B444) as a core material and polystyrene (PS) as a shell material were prepared via dispersion polymerization of styrene, and then the fabricated B444/PS composite particles were positively charged with 2-(methacryloyloxy) ethyl trimethylammonium chloride. Morphology of the B444/PS core-shell particles was observed by scanning electron microscopy, while their chemical structure was confirmed via an FT-IR. Maximum values of the electrophoretic mobility and zeta potential observed by dynamic light scattering reach 4.46 x 10(-6) m2/Vs and 30.23 mV in a low dielectric medium, respectively. The resulting B444/PS particles also showed good electrophoretic movement in the B444/PS particle embedded microcapsules. Therefore, it can be applied in the dual-particle electrophoretic dispersion together with negative charged TiO2, showing black and white images.

17.
Micromachines (Basel) ; 14(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38004918

RESUMO

In this work, environmentally friendly and low-cost passive electrical components (PECs) are manufactured based on composites consisting of cotton fabrics soaked with solutions of silicone oil and different amounts of iron oxides microfibers (µFe). The µFe consists of a mixture of three phases: hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4). The equivalent electrical capacitance (Cp) and resistance (Rp) of PECs are measured as a function of magnetic flux density B in a static and pulsed magnetic field superimposed on an alternating electric field of frequency 1 kHz. The relative variation in the hysteresis curves for both Cp and Rp are obtained by measuring them in the ascending and then the descending mode of B. We show that all these three quantities are sensibly influenced by the volume fractions of µFe and by the values of B. The main influence on this behavior is attributed to the semiconductor properties of the α-Fe2O3 and γ-Fe2O3 components of the oxide microfibers. In addition, it is found that at B≃ 175 mT, the maximum relative variance of the hysteresis curve is about 3.35% for Cp and 3.18 % for Rp. When a pulsed magnetic field is used, it is shown that Cp and Rp closely follow the variation in the magnetic field. Thus, the resulting electrical properties of PECs, together with the fast response to the application of pulsed magnetic fields, make them useful in the fabrication of various devices, such as electric, magnetic, and deformation fields, or mechanical stress sensors with applications in protection against electromagnetic smog, healthcare monitoring, or for human-machine interfacing.

18.
Polymers (Basel) ; 15(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112100

RESUMO

Thermoplastic starch was blended with commercially available biodegradable polyesters of poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) for its improved performance and processability. The morphology and elemental composition of these biodegradable polymer blends were observed by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively, while their thermal properties were analyzed using thermogravimetric analysis and differential thermal calorimetry. For rheological analysis, the steady shear and dynamic oscillation tests of three samples at various temperatures were investigated using a rotational rheometer. All three samples exhibited significant shear thinning at all measured temperatures, and their shear viscosity behavior was plotted using the Carreau model. The frequency sweep tests showed that the thermoplastic starch sample exhibited a solid state at all temperatures tested, whereas both starch/PBAT and starch/PBAT/PLA blend samples exhibited viscoelastic liquid behavior after the melting temperature such that their loss modulus at low frequencies was greater than the storage modulus, and inversion occurred at high frequencies (storage modulus > loss modulus).

19.
Langmuir ; 28(17): 7055-62, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22486527

RESUMO

Silica-graphene oxide (Si-GO) hybrid composite particles were prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of hydrophilic GO obtained from a modified Hummers method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visible evidence of the silica nanoparticles grafted on the surface of GO, resulting in Si-GO hybrid composite particles. Energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) spectra indicated the coexistence of silica and GO in the composite particles. The Si-GO hybrid composite particles showed better thermal stability than that of GO according to thermogravimetric analysis (TGA). The electrorheological (ER) characteristics of the Si-GO hybrid composite based ER fluid were examined further by optical microscopy and a rotational rheometer in controlled shear rate mode under various electric field strengths. Shear stress curves were fitted using both conventional Bingham model and a constitutive Cho-Choi-Jhon model. The polarizability and relaxation time of the ER fluid from dielectric spectra measured using an LCR meter showed a good correlation with its ER characteristics.

20.
Polymers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559922

RESUMO

Polymer flooding is an appropriate enhanced oil recovery (EOR) process that can increase macroscopic sweep efficiency. We examined two polymeric superpushers at different salinities (10,000 and 42,000 ppm of NaCl and 18,000 ppm of CaCl2) and temperatures (30 to 75 °C) as polymer-flooding agents for the EOR process. Rheological and thixotropic tests were attempted to find shear viscosity change when the polymer solutions were introduced under different salinity and temperatures, followed by describing the rheological behavior with the two most common rheological models used for polymer solutions, and then a quadratic model with Design-Expert to detect the effective parameters. Core flooding tests were conducted afterward to determine the final proposed fluid. An increase in the concentration of monovalent ions and the addition of divalent ions adversely affected both types of polymers used, which was similar to the effects of a temperature increase. The Flopaam 3630S at 1000 ppm has more stability under harsh conditions and enables 22% and 38% oil recovery in carbonate and sandstone core rocks, respectively. Consequently, Flopaam 3630S can be the perfect polymer agent for different chemical flooding procedures in high-salinity oil reservoirs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA