Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 42, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183480

RESUMO

The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.


Assuntos
Ecossistema , Microcystis , Microcystis/genética , RNA Ribossômico 16S/genética , Água Doce , Sequenciamento de Nucleotídeos em Larga Escala
2.
Genes Dev ; 30(21): 2433-2442, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856615

RESUMO

Methylated cytosines are associated with gene silencing. The ten-eleven translocation (TET) hydroxylases, which oxidize methylated cytosines to 5-hydroxymethylcytosine (5hmC), are essential for cytosine demethylation. Gene silencing and activation are critical for intestinal stem cell (ISC) maintenance and differentiation, but the potential role of TET hydroxylases in these processes has not yet been examined. Here, we generated genome-wide maps of the 5hmC mark in ISCs and their differentiated progeny. Genes with high levels of hydroxymethylation in ISCs are strongly associated with Wnt signaling and developmental processes. We found Tet1 to be the most abundantly expressed Tet gene in ISCs; therefore, we analyzed intestinal development in Tet1-deficient mice and determined that these mice are growth-retarded, exhibit partial postnatal lethality, and have significantly reduced numbers of proliferative cells in the intestinal epithelium. In addition, the Tet1-deficient intestine displays reduced organoid-forming capacity. In the Tet1-deficient crypt, decreased expression of Wnt target genes such as Axin2 and Lgr5 correlates with lower 5hmC levels at their promoters. These data demonstrate that Tet1-mediated DNA hydroxymethylation plays a critical role in the epigenetic regulation of the Wnt pathway in intestinal stem and progenitor cells and consequently in the self-renewal of the intestinal epithelium.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Intestinos/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Intestinos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Deleção de Sequência , Células-Tronco/citologia , Via de Sinalização Wnt/genética
3.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299290

RESUMO

Chili pepper (Capsicumannuum) is an important fruit and spice used globally, but its yield is seriously threatened by anthracnose. Capsicum baccatum is particularly valuable as it carries advantageous disease resistance genes. However, most of the genes remain to be identified. In this study, we identified the C. baccatum-specific gene CbCN, which encodes a truncated nucleotide-binding and leucine-rich repeat protein in the anthracnose resistant chili pepper variety PBC80. The transcription of CbCN was greater in PBC80 than it was in the susceptible variety An-S after Colletotrichum acutatum inoculation. In order to investigate the biological function of CbCN, we generated transgenic tobacco lines constitutively expressing CbCN. Notably, CbCN-overexpressing transgenic plants exhibited enhanced resistance to C. acutatum compared to wild-type plants. Moreover, the expression of pathogenesis-related (PR) genes was remarkably increased in a CbCN-overexpressing tobacco plants. In order to confirm these results in chili pepper, we silenced the CbCN gene using the virus-induced gene silencing system. The anthracnose resistance and expressions of PR1, PR2, and NPR1 were significantly reduced in CbCN-silenced chili peppers after C. acutatum inoculations. These results indicate that CbCN enhances the innate immunity against anthracnose caused by C. acutatum by regulating defense response genes.


Assuntos
Capsicum/genética , Colletotrichum/patogenicidade , Proteínas NLR/genética , Capsicum/metabolismo , Colletotrichum/genética , Resistência à Doença/genética , Suscetibilidade a Doenças/metabolismo , Interações Hospedeiro-Patógeno/genética , Proteínas NLR/metabolismo , Doenças das Plantas/genética
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830493

RESUMO

Anthracnose is caused by Colletotrichum species and is one of the most virulent fungal diseases affecting chili pepper (Capsicum) yield globally. However, the noble genes conferring resistance to Colletotrichum species remain largely elusive. In this study, we identified CbAR9 as the causal locus underlying the large effect quantitative trait locus CcR9 from the anthracnose-resistant chili pepper variety PBC80. CbAR9 encodes a nucleotide-binding and leucine-rich repeat (NLR) protein related to defense-associated NLRs in several other plant species. CbAR9 transcript levels were induced dramatically after Colletotrichum capsici infection. To explore the biological function, we generated transgenic Nicotiana benthamiana lines overexpressing CbAR9, which showed enhanced resistance to C. capsici relative to wild-type plants. Transcript levels of pathogenesis-related (PR) genes increased markedly in CbAR9-overexpressing N. benthamiana plants. Moreover, resistance to anthracnose and transcript levels of PR1 and PR2 were markedly reduced in CbAR9-silenced chili pepper fruits after C. capsici infection. Our results revealed that CbAR9 contributes to innate immunity against C. capsici.


Assuntos
Capsicum/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Colletotrichum/genética , Resistência à Doença/genética , Proteínas NLR/genética
5.
Mol Genet Genomics ; 295(5): 1129-1140, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32458040

RESUMO

Pre-harvest sprouting (PHS) leads to serious economic losses because of reductions in yield and quality. To analyze the quantitative trait loci (QTLs) for PHS resistance in japonica rice, PHS rates on panicles were measured in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae (PHS resistant) and Unbong40 (PHS susceptible) under two different environmental conditions-field (summer) and greenhouse (winter) environments. Genome re-sequencing of the parental varieties detected 266,773 DNA polymorphisms including 248,255 single nucleotide polymorphisms and 18,518 insertions/deletions. We constructed a genetic map comprising 239 kompetitive allele-specific PCR and 49 cleaved amplified polymorphic sequence markers. In the field environment, two major QTLs, qPHS-3FD and qPHS-11FD, were identified on chromosomes 3 and 11, respectively, whereas three major QTLs, qPHS-3GH, qPHS-4GH, and qPHS-11GH, were identified on chromosomes 3, 4, and 11, respectively, in the greenhouse environment. qPHS-11GH and qPHS-11FD had similar locations on chromosome 11, suggesting the existence of a gene conferring stable PHS resistance effects under different environmental conditions. The QTLs identified in this study can be used to improve the PHS resistance of japonica varieties, and they may improve our understanding of the genetic basis of PHS resistance.


Assuntos
Oryza/fisiologia , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Germinação , Mutação INDEL , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único
6.
Planta ; 252(3): 38, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32779032

RESUMO

MAIN CONCLUSION: A new imaging platform was constructed to analyze drought-tolerant traits of rice. Rice was used to quantify drought phenotypes through image-based parameters and analyzing tools. Climate change has increased the frequency and severity of drought, which limits crop production worldwide. Developing new cultivars with increased drought tolerance and short breeding cycles is critical. However, achieving this goal requires phenotyping a large number of breeding populations in a short time and in an accurate manner. Novel cutting-edge technologies such as those based on remote sensors are being applied to solve this problem. In this study, new technologies were applied to obtain and analyze imaging data and establish efficient screening platforms for drought tolerance in rice using the drought-tolerant mutant osphyb. Red-Green-Blue images were used to predict plant area, color, and compactness. Near-infrared imaging was used to determine the water content of rice, infrared was used to assess plant temperature, and fluorescence was used to examine photosynthesis efficiency. DroughtSpotter technology was used to determine water use efficiency, plant water loss rate, and transpiration rate. The results indicate that these methods can detect the difference between tolerant and susceptible plants, suggesting their value as high-throughput phenotyping methods for short breeding cycles as well as for functional genetic studies of tolerance to drought stress.


Assuntos
Secas , Oryza/genética , Oryza/fisiologia , Fenótipo , Seleção Genética/genética , Variação Genética
7.
Sensors (Basel) ; 20(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906262

RESUMO

Data phenotyping traits on soybean seeds such as shape and color has been obscure because it is difficult to define them clearly. Further, it takes too much time and effort to have sufficient number of samplings especially length and width. These difficulties prevented seed morphology to be incorporated into efficient breeding program. Here, we propose methods for an image acquisition, a data processing, and analysis for the morphology and color of soybean seeds by high-throughput method using images analysis. As results, quantitative values for colors and various types of morphological traits could be screened to create a standard for subsequent evaluation of the genotype. Phenotyping method in the current study could define the morphology and color of soybean seeds in highly accurate and reliable manner. Further, this method enables the measurement and analysis of large amounts of plant seed phenotype data in a short time, which was not possible before. Fast and precise phenotype data obtained here may facilitate Genome Wide Association Study for the gene function analysis as well as for development of the elite varieties having desirable seed traits.


Assuntos
Técnicas Biossensoriais , Glycine max/anatomia & histologia , Ensaios de Triagem em Larga Escala , Sementes/anatomia & histologia , Cruzamento , Genótipo , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Sementes/genética , Glycine max/genética
8.
Nature ; 504(7478): 153-7, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24185009

RESUMO

The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(ΔIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(ΔIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(ΔIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(ΔIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.


Assuntos
Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Homeostase , Mucosa Intestinal/enzimologia , Intestinos/microbiologia , Simbiose , Adulto , Animais , Bactérias/genética , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/enzimologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , RNA Ribossômico 16S/genética , Transdução de Sinais
9.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137840

RESUMO

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, has become a serious threat in rice-cultivating regions worldwide. In the present study, quantitative trait locus (QTL) mapping was performed using F2 and F3 plants derived after crossing a BD-resistant and a BD-susceptible Korean japonica rice variety, 'Samgwang' and 'Junam', respectively. Resequencing of 'Junam' and 'Samgwang' genomes revealed 151,916 DNA polymorphisms between the two varieties. After genotyping 188 F2 plants, we constructed a genetic map comprising 184 markers, including 175 kompetitive allele-specific PCR markers, eight cleaved amplified polymorphic sequence (CAPS) markers, and a derived CAPS (dCAPS) marker. The degree of BD susceptibility of each F2 plant was evaluated on the basis of the mortality rate measured with corresponding F3 progeny seedlings by in vitro screening. Consequently, qFfR9, a major QTL, was discovered at 30.1 centimorgan (cM) on chromosome 9 with a logarithm of the odds score of 60.3. For the QTL interval, 95% probability lay within a 7.24-7.56 Mbp interval. In this interval, we found that eight genes exhibited non-synonymous single nucleotide polymorphisms (SNPs) by comparing the 'Junam' and 'Samgwang' genome sequence data, and are possibly candidate genes for qFfR9; therefore, qFfR9 could be utilized as a valuable resource for breeding BD-resistant rice varieties.


Assuntos
Resistência à Doença , Oryza/genética , Locos de Características Quantitativas , Fusarium/patogenicidade , Genoma de Planta , Oryza/imunologia , Oryza/microbiologia , Polimorfismo de Nucleotídeo Único
10.
Mol Genet Genomics ; 293(3): 579-586, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29230584

RESUMO

Bakanae disease (BD) has emerged as a serious threat in almost all rice cultivation regions worldwide. Nampyeong is a Korean japonica rice variety known to be resistant to BD. In this study, quantitative trait locus (QTL) mapping was performed with F2 and F3 plants derived from a cross between the Nampyeong variety and a susceptible Korean japonica line, DongjinAD. First, resequencing of Nampyeong and DongjinAD was performed, which identified 171,035 single nucleotide polymorphisms (SNPs) between the two parental varieties. Using these SNPs, 161 cleaved amplified polymorphic sequence (CAPS) markers and six derived CAPS markers were developed; then, a genetic map was constructed from the genotypes of 180 plants from the DongjinAD/Nampyeong F2 plants. The total length of the constructed genetic map was 1386 cM, with an average interval of 8.9 cM between markers. The BD mortality rates of each F3 family were measured by testing 40 F3 progenies using in vitro seedling screening method. QTL analysis based on the genetic map and mortality rate data revealed a major QTL, qFfR1, on rice chromosome 1. qFfR1 was located at 89.8 cM with a logarithm of the odds (LOD) score of 22.7. Further, there were three markers at this point: JNS01033, JNS01037, and JNS01041. A total of 15 genes were identified with annotations related to defense against plant diseases among the 179 genes in the qFfR1 interval at 95% probability, thereby providing potential candidate genes for qFfR1. qFfR1 and its closely linked markers will be useful in breeding rice varieties resistant to BD.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Oryza/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Ligação Genética , Oryza/imunologia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
PLoS Genet ; 10(3): e1004204, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603501

RESUMO

Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this mitotic chromatin association is mediated through the direct association of RBPJ with DNA. We further demonstrate that RBPJ binds directly to nucleosomal DNA in vitro, with a preference for sites close to the entry/exit position of the nucleosomal DNA. Genome-wide analysis in the murine embryonal-carcinoma cell line F9 revealed that roughly 60% of the sites occupied by RBPJ in asynchronous cells were also occupied in mitotic cells. Among them, we found that a fraction of RBPJ occupancy sites shifted between interphase and mitosis, suggesting that RBPJ can be retained on mitotic chromatin by sliding on DNA rather than disengaging from chromatin during mitotic chromatin condensation. We propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon mitotic exit. Strikingly, we found that sites of RBPJ occupancy were enriched for CTCF-binding motifs in addition to RBPJ-binding motifs, and that RBPJ and CTCF interact. Given that CTCF regulates transcription and bridges long-range chromatin interactions, our results raise the intriguing hypothesis that by collaborating with CTCF, RBPJ may participate in establishing chromatin domains and/or long-range chromatin interactions that could be propagated through cell division to maintain gene expression programs.


Assuntos
Cromatina/genética , DNA/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Mitose/genética , Animais , Fator de Ligação a CCCTC , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Interfase/genética , Camundongos , Nucleossomos/genética , Nucleossomos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
12.
PLoS Genet ; 10(4): e1004284, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743307

RESUMO

Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.


Assuntos
Cromatina/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Linhagem Celular , Cromatina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Regiões Promotoras Genéticas/genética
13.
Int J Mol Sci ; 17(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775666

RESUMO

In this study, we investigated global changes in miRNAs of Meloidogyne incognita throughout its life cycle. Small RNA sequencing resulted in approximately 62, 38, 38, 35, and 39 Mb reads in the egg, J2, J3, J4, and female stages, respectively. Overall, we identified 2724 known and 383 novel miRNAs (read count > 10) from all stages, of which 169 known and 13 novel miRNA were common to all the five stages. Among the stage-specific miRNAs, miR-286 was highly expressed in eggs, miR-2401 in J2, miR-8 and miR-187 in J3, miR-6736 in J4, and miR-17 in the female stages. These miRNAs are reported to be involved in embryo and neural development, muscular function, and control of apoptosis. Cluster analysis indicated the presence of 91 miRNA clusters, of which 36 clusters were novel and identified in this study. Comparison of miRNA families with other nematodes showed 17 families to be commonly absent in animal parasitic nematodes and M. incognita. Validation of 43 predicted common and stage-specific miRNA by quantitative PCR (qPCR) indicated their expression in the nematode. Stage-wise exploration of M. incognita miRNAs has not been carried out before and this work presents information on common and stage-specific miRNAs of the root-knot nematode.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , MicroRNAs/genética , RNA de Helmintos/genética , Tylenchoidea/genética , Animais , Sequência de Bases , Análise por Conglomerados , Feminino , MicroRNAs/química , MicroRNAs/classificação , Modelos Moleculares , Conformação de Ácido Nucleico , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , RNA de Helmintos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Tylenchoidea/crescimento & desenvolvimento
14.
Planta ; 241(3): 773-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25491640

RESUMO

MAIN CONCLUSION: The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.


Assuntos
Inativação Gênica , Chaperonas Moleculares/antagonistas & inibidores , Nematoides/metabolismo , Controle Biológico de Vetores/métodos , RNA de Cadeia Dupla/farmacologia , Animais , Regulação para Baixo , Estudos de Viabilidade , Vetores Genéticos , Glutationa Redutase , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Plantas Geneticamente Modificadas , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Nicotiana
15.
BMC Genomics ; 15: 670, 2014 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25106691

RESUMO

BACKGROUND: Recent mapping of 5-hydroxymethylcytosine (5hmC) provides a genome-wide view of the distribution of this important chromatin mark. However, the role of 5hmC in specific regulatory regions is not clear, especially at enhancers. RESULTS: We found a group of distal transcription factor binding sites highly enriched for 5-hdroxymethylcytosine (5hmC), but lacking any known activating histone marks and being depleted for nascent transcripts, suggesting a repressive role for 5hmC in mouse embryonic stem cells (mESCs). 5-formylcytosine (5fC), which is known to mark poised enhancers where H3K4me1 is enriched, is also observed at these sites. Furthermore, the 5hmC levels were inversely correlated with RNA polymerase II (PolII) occupancy in mESCs as well as in fully differentiated adipocytes. Interestingly, activating H3K4me1/2 histone marks were enriched at these sites when the associated genes become activated following lineage specification. These putative enhancers were shown to be functional in embryonic stem cells when unmethylated. Together, these data suggest that 5hmC suppresses the activity of this group of enhancers, which we termed "silenced enhancers". CONCLUSIONS: Our findings indicate that 5hmC has a repressive role at specific proximal and distal regulatory regions in mESCs, and suggest that 5hmC is a new epigenetic mark for silenced enhancers.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , 5-Metilcitosina/análogos & derivados , Animais , Sítios de Ligação , Linhagem da Célula , Citosina/metabolismo , Células-Tronco Embrionárias/citologia , Histonas/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
16.
Sci Total Environ ; 902: 165888, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544456

RESUMO

Although nutrient availability is widely recognized as the driving force behind Microcystis blooms, identifying the microorganisms that play a pivotal role in their formation is a challenging task. Our understanding of the contribution of bacterial communities to the development of Microcystis blooms remains incomplete, despite the fact that the relationship between Microcystis and bacterial communities has been extensively investigated. Most studies have focused on their interaction for a single year rather than for multiple years. To determine key bacteria crucial for the formation of Microcystis blooms, we collected samples from three sites in the Daechung Reservoir (Chuso, Hoenam, and Janggye) over three years (2017, 2019, and 2020). Our results indicated that Microcystis bloom-associated bacterial communities were more conserved across stations than across years. Bacterial communities could be separated into modules corresponding to the different phases of Microcystis blooms. Dolichospermum and Aphanizomenon belonged to the same module, whereas the module of Microcystis was distinct. The microbial recurrent association network (MRAN) showed that amplicon sequence variants (ASVs) directly linked to Microcystis belonged to Pseudanabaena, Microscillaceae, Sutterellaceae, Flavobacterium, Candidatus Aquiluna, Bryobacter, and DSSD61. These ASVs were also identified as key indicators of the bloom stage, indicating that they were fundamental biological elements in the development of Microcystis blooms. Overall, our study highlights that, although bacterial communities change annually, they continue to share core ASVs that may be crucial for the formation and maintenance of Microcystis blooms.


Assuntos
Aphanizomenon , Cianobactérias , Microcystis , Microcystis/fisiologia , Consórcios Microbianos , Lagos/microbiologia
17.
Genes (Basel) ; 14(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37628644

RESUMO

Tiller number is an important trait associated with yield in rice. Tiller number in Korean japonica rice was analyzed under greenhouse conditions in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae and Unbong40 to identify quantitative trait loci (QTLs). A genetic map comprising 239 kompetitive allele-specific PCR (KASP) and 57 cleaved amplified polymorphic sequence markers was constructed. qTN3, a major QTL for tiller number, was identified at 132.4 cm on chromosome 3. This QTL was also detected under field conditions in a backcross population; thus, qTN3 was stable across generations and environments. qTN3 co-located with QTLs associated with panicle number per plant and culm diameter, indicating it had pleiotropic effects. The qTN3 regions of Odae and Unbong40 differed in a known functional variant (4 bp TGTG insertion/deletion) in the 5' UTR of OsTB1, a gene underlying variation in tiller number and culm strength. Investigation of variation in genotype and tiller number revealed that varieties with the insertion genotype had lower tiller numbers than those with the reference genotype. A high-resolution melting marker was developed to enable efficient marker-assisted selection. The QTL qTN3 will therefore be useful in breeding programs developing japonica varieties with optimal tiller numbers for increased yield.


Assuntos
Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Regiões 5' não Traduzidas , República da Coreia
18.
PLoS One ; 17(8): e0273845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040983

RESUMO

Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore, the response of two varieties of blueberry, 'Suziblue' and 'Star', to light was tested using SAPD meter in order to demonstrate the environmental responses could be different among varieties within the same species. The results showed that those two varieties had significant differences in SPAD values based on the leaf's position and time, whereas 'Star' did not. This indicates that the effect of light depends on the variety, which implies that other traits and other crops may show similar differences. These results are based on a simple experiment. However, it is enough to elucidate that it is extremely important to characterize responses to the environment not only for each crop but also for each variety to collect data for smart farming to increase accuracy for modeling; consequently, to maximize the efficiency of these facilities.


Assuntos
Mirtilos Azuis (Planta) , Agricultura/métodos , Inteligência Artificial , Produtos Agrícolas , Fazendas
19.
PLoS One ; 16(6): e0253140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34157035

RESUMO

Quantum computing is a newly emerging computing environment that has recently attracted intense research interest in improving the output fidelity, fully utilizing its high computing power from both hardware and software perspectives. In particular, several attempts have been made to reduce the errors in quantum computing algorithms through the efficient synthesis of quantum circuits. In this study, we present an application of an optimization model for synthesizing quantum circuits with minimum implementation costs to lower the error rates by forming a simpler circuit. Our model has a unique structure that combines the arc-subset selection problem with a conventional multi-commodity network flow model. The model targets the circuit synthesis with multiple control Toffoli gates to implement Boolean reversible functions that are often used as a key component in many quantum algorithms. Compared to previous studies, the proposed model has a unifying yet straightforward structure for exploiting the operational characteristics of quantum gates. Our computational experiment shows the potential of the proposed model, obtaining quantum circuits with significantly lower quantum costs compared to prior studies. The proposed model is also applicable to various other fields where reversible logic is utilized, such as low-power computing, fault-tolerant designs, and DNA computing. In addition, our model can be applied to network-based problems, such as logistics distribution and time-stage network problems.


Assuntos
Simulação por Computador , Teoria Quântica , Computadores Moleculares , Software
20.
Water Res ; 170: 115326, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838363

RESUMO

Every member of the ecological community is connected via a network of vital and complex relationships, called the web of life. To elucidate the ecological network and interactions among producers, consumers, and decomposers in the Daechung Reservoir, Korea, during cyanobacterial harmful algal blooms (cyanoHAB), especially those involving Microcystis, we investigated the diversity and compositions of the cyanobacterial (16S rRNA gene), including the genotypes of Microcystis (cpcBA-IGS gene), non-cyanobacterial (16S), and eukaryotic (18S) communities through high-throughput sequencing. Microcystis blooms were divided into the Summer Major Bloom and Autumn Minor Bloom with different dominant genotypes of Microcystis. Network analysis demonstrated that the modules involved in the different phases of the Microcystis blooms were categorized into the Pre-Bloom, Bloom, Post-Bloom, and Non-Bloom Groups at all sampling stations. In addition, the non-cyanobacterial components of each Group were classified, while the same Group showed similarity across all stations, suggesting that Microcystis and other microbes were highly interdependent and organized into cyanoHAB-related module units. Importantly, the Microcystis genotype-based sub-network uncovered that Pirellula, Pseudanabaena, and Vampirovibrionales preferred to interact with specific Microcystis genotypes in the Summer Major Bloom than with other genotypes in the Autumn Minor Bloom, while the copepod Skistodiaptomus exhibited the opposite pattern. In conclusion, the transition patterns of cyanoHAB-related modules and their key components could be crucial in the succession of Microcystis genotypes and to enhance the understanding of microbial ecology in an aquatic environment.


Assuntos
Cianobactérias , Microcystis , Genótipo , RNA Ribossômico 16S , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA