Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Analyst ; 137(8): 1930-6, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22396950

RESUMO

Organic isocyanide adsorbed on a noble metal nanostructure can be used as a platform for a volatile organic compound (VOC) sensor operating via surface-enhanced Raman scattering (SERS). This is possible since the NC stretching band of organic isocyanides such as 2,6-dimethylphenylisocyanide (2,6-DMPI) is very susceptible to the surface potential of Au onto which 2,6-DMPI is assembled. The surface potential of Au nanoparticles is even subject to change by VOCs, which can be easily monitored by the SERS of 2,6-DMPI. Thereby, under the flow of CCl(4) vapor at a partial pressure of 12.8 kPa, for instance, the NC stretching band is blue-shifted by up to 20 cm(-1) within 30 s, corresponding to a potential change of +0.56 V. Conversely, under the flow of butylamine at 12.8 kPa, the NC stretching band is red-shifted, instead of being blue-shifted, by as much as 12 cm(-1). At lower partial pressures, even a blue- or red-shift of 1 cm(-1) was reproducibly measured at a partial pressure of 125 mPa, corresponding to 6.5 ppm for CCl(4), suggesting that the present detection limit is superior to the results obtained via other techniques, especially those operating based on gold nanoparticles and aggregates.

2.
Nanotechnology ; 23(12): 125301, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22398242

RESUMO

Nanostructured graphenes such as nanoribbons, nanomeshes, and nanodots have attracted a great deal of attention in relation to graphene-based semiconductor devices. The block copolymer micellar approach is a promising bottom-up technique for generating large area nanostructures of various materials without using sophisticated electron-beam lithography. Here we demonstrate the fabrication of an array of graphene nanodots with tunable size and inter-distance with the utilization of a monolayer of diblock copolymer micelles. Au nanoparticles were synthesized in the micellar cores and effectively worked as shielding nanostructures in generating graphene nanodots by oxygen plasma etching. We also controlled the radius and inter-distance of graphene nanodots simply through the molecular weight of the copolymers.

3.
Phys Chem Chem Phys ; 13(13): 5981-6, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21336401

RESUMO

The surface-enhanced Raman scattering characteristics of 2,6-dimethylphenylisocyanide (2,6-DMPI) on Pt nanoaggregates, in ambient and electrochemical environments and in the presence of organic vapors, were examined and compared with those on Au nanoaggregates. Due to the exclusive adsorption via the isocyanide group, the NC stretching band was very susceptible to the measurement conditions although the ring associated bands showed negligible peak shifts. In ambient conditions, the peak shift of the NC stretching vibration on Pt (29 cm(-1)) was one half of that on Au (61 cm(-1)), suggesting that the electron donation capability of the isocyanide group to Au was greater than that to Pt. In the electrochemical environment, the NC stretching peak varied linearly with slopes of ∼42 and ∼36 cm(-1) V(-1) on Pt and Au, respectively. On the other hand, the NC stretching bands of 2,6-DMPI on Pt red-shifted by as much as 15 and 41 cm(-1), in the presence of acetone and ammonia, respectively, corresponding to the lowering of the surface potential of Pt nanoaggregates from +0.2 to -0.2 and -0.8 V, respectively. On Au nanoaggregates, however, acetone appeared to increase the surface potential of Au from +0.2 to +0.3 V, although ammonia decreased the surface potential from +0.2 to -0.4 V. Acetone must then act as an electron donor when interacting with Pt while it serves as an electron acceptor when interacting with Au, in agreement with an ab initio quantum mechanical calculation.

4.
J Chem Phys ; 135(12): 124705, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974550

RESUMO

A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Ácidos Sulfanílicos/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
5.
Langmuir ; 26(24): 19163-9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21114273

RESUMO

Nanoparticles are commonly stabilized through the adsorption of acidic/basic polyelectrolytes around the surface of the particle. One example of these nanoparticles is poly(ethylenimine) (PEI)-capped Au nanoparticles. In this work, we have examined by means of surface-enhanced Raman scattering (SERS) of 2,6-dimethylphenylisocyanide (2,6-DMPI) how much the surface potential of Au nanoparticles is affected by the solution pH through the mediation of the protonation and deprotonation of PEI in contact with Au nanoparticles. In fact, the surface-potential-dependent isocyanide (NC) stretching peak of 2,6-DMPI has shifted sharply around pH 8.5, close to the pK(a) value of the primary amine of PEI. When a negatively charged poly(acrylic acid) (PAA) was deposited onto the PEI, the peak shift of the NC stretching band took place around pH 6.5, close to the average pK(a) value of PEI and PAA. When additional PEI was deposited on PAA, the peak shift of the NC stretching band occurred once again around pH 8.5, indicative of the stronger interaction of upper two polyelectrolyte layers. These data clearly illustrate the usefulness of SERS in the elucidation of a delicate interaction of cationic and anionic polyelectrolytes, especially in layer-by-layer deposition.


Assuntos
Eletrólitos/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Análise Espectral Raman , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
6.
Artigo em Inglês | MEDLINE | ID: mdl-22326719

RESUMO

A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). In this sense, the characteristics of 1,4-phenylenediisocyanide (1,4-PDI) trapped in a nanogap formed by a flat Au or Ag substrate and 60 nm-sized Au or Ag nanoparticles have been examined by means of Raman scattering spectroscopy. It is noteworthy that the NC stretching band of 1,4-PDI is very susceptible to the measurement condition. The NC stretching band is observed at 2177, 2173, and 2174 cm(-1) when 1,4-PDI is trapped in the Au-Au, Ag-Au, and Au-Ag nanogaps, respectively, but the corresponding peak shifts linearly with a slope of as much as 22.4, 28.5, and 31.2 cm(-1)V(-1), respectively, in the electrochemical environment. On the other hand, the NC stretching peak is found to blue-shift by up to 8, 3, and 5 cm(-1), respectively, when the Au-Au, Ag-Au, and Au-Ag nanogaps are exposed to acetic acid. In contrast, in the presence of ammonia, the NC stretching peak is red-shifted by up to 9, 4, and 5 cm(-1), respectively. This can be understood by presuming that acetic acid acts as an electron acceptor, while ammonia acts as an electron donor when these volatile organics interact with Au or Ag, thereby resulting in either the increase or the decrease in the surface potential of the nanogap electrodes.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nitrilas/química , Prata/química , Análise Espectral Raman , Ácido Acético/química , Amônia/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Espectrofotometria Ultravioleta , Termodinâmica
7.
ACS Appl Mater Interfaces ; 3(2): 324-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21190360

RESUMO

We have developed a new type of dual-tag sensor for immunoassays, operating via both fluorescence and surface-enhanced Raman scattering (SERS). A one-shot fluorescence image over the whole specimen allows us to save considerable time because any unnecessary time-consuming SERS measurements can be avoided from the signature of the fluorescence. Dye-embedded silica beads are prepared initially, and then SERS-active silver is coated onto them via a very simple electroless-plating method. The Raman markers are subsequently assembled onto the Ag-coated silica beads, after which they are stabilized by silanization via a biomimetic process in which a poly(allylamine hydrochloride) layer formed on the Raman markers by a layer-by-layer deposition method acting as a scaffold for guiding silicification. In the final stage, specific antibodies are attached to the silica surface in order to detect target antigens. The fluorescence signal of the embedded dye can be used as a fast readout system of molecular recognition, whereas the SERS signals are subsequently used as the signature of specific molecular interactions. In this way, the antibody-grafted particles were found to recognize antigens down to 1 × 10(-10) g mL(-1) solely by the SERS peaks of the Raman markers.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Prata/química , Espectrometria de Fluorescência/métodos , Análise Espectral Raman/métodos , Animais , Anticorpos/química , Anticorpos/metabolismo , Reações Antígeno-Anticorpo , Humanos , Imunoensaio/métodos , Camundongos , Microscopia Eletrônica de Varredura , Técnicas de Sonda Molecular , Rodaminas/química
8.
ACS Appl Mater Interfaces ; 2(7): 1872-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20586448

RESUMO

Silica-coated Ag nanostructures usable as magnetic nanoparticle-based Raman barcode materials were developed. Initially, 283 nm sized spherical magnetite particles composed of 13 nm sized superparamagnetic Fe(3)O(4) nanoparticles were synthesized, and silver deposition was conducted using butylamine as the reductant of AgNO(3) in ethanol. The Ag-deposited Fe(3)O(4) (Fe(3)O(4)@Ag) particles are found to be efficient surface-enhanced Raman scattering (SERS) substrates with the enhancement factor at 632.8 nm excitation to be about 3 x 10(6). After SERS markers such as benzenethiol, 4-mercaptotoluene, 4-aminobenzenethiol, and 4-nitrobenzenethiol were adsorbed onto the silver surface, poly(allylamine hydrochloride) (PAH) was coated onto them using the layer-by-layer deposition method such that a subsequent base-catalyzed silanization could readily form a 60 nm thick silica shell around the PAH layer by a biomimetic process. The cross-linked silica shells effectively prevented the SERS-marker molecules from being liberated from the surface of the Fe(3)O(4)@Ag particles. Although the gram magnetization decreased nearly to one-half of the initial value because of coating with silver and silica, the remaining magnetization was nonetheless strong enough for the silica-coated Fe(3)O(4)@Ag particles to be used as barcode materials operating via SERS.


Assuntos
Óxido Ferroso-Férrico/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Silício/química , Prata/química , Tamanho da Partícula , Análise Espectral Raman
9.
Biochem Biophys Res Commun ; 303(3): 954-61, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12670504

RESUMO

The activation of the hepatic stellate cell (HSC) is a key step in liver fibrogenesis. Utilizing large scale sequencing of a 3'-directed cDNA library, we investigated expression profiles of quiescent and activated rat HSCs. During the activation process, O-acetyl disialoganglioside synthase (OAcGD3S) was identified as one of the significant upregulated factors. Upregulation of OAcGD3S in cultured HSCs was confirmed by both Northern and Western blot analyses. OAcGD3S expression in models of experimental liver fibrosis was investigated at the mRNA level using RT-PCR. The expression of OAcGD3S protein in activated rat HSCs and in experimental fibrotic livers was demonstrated by immunohistochemistry. In situ hybridization revealed OAcGD3S mRNA expression in areas of ductular proliferation. Furthermore, O-acetyl GD3 protein was detected in activated rat HSCs and human cirrhosis livers. This study shows that OAcGD3S is strongly expressed during liver fibrogenesis and HSCs seem to be the major cellular sources of OAcGD3S in the liver.


Assuntos
Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo , Adulto , Animais , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA