Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 43, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273381

RESUMO

BACKGROUND: The FGF/FGFR signaling pathway plays a critical role in human cancers. We analyzed the anti-tumor effect of AZD4547, an inhibitor targeting the FGF/FGFR pathway, in epithelial ovarian cancer (EOC) and strategies on overcoming AZD4547 resistance. METHODS: The effect of AZD4547 on cell viability/migration was evaluated and in vivo experiments in intraperitoneal xenografts using EOC cells and a patient-derived xenograft (PDX) model were performed. The effect of the combination of AZD4547 with SU11274, a c-Met-specific inhibitor, FGF19-specific siRNA, or an FGFR4 inhibitor was evaluated by MTT assay. RESULTS: AZD4547 significantly decreased cell survival and migration in drug-sensitive EOC cells but not drug-resistant cells. AZD4547 significantly decreased tumor weight in xenograft models of drug-sensitive A2780 and SKOV3ip1 cells and in a PDX with drug sensitivity but not in models with drug-resistant A2780-CP20 and SKOV3-TR cells. Furthermore, c-Met expression was high in SKOV3-TR and HeyA8-MDR cells, and co-administration of SU11274 and AZD4547 synergistically induced cell death. In addition, expressions of FGF19 and FGFR4 were high in A2780-CP20 cells. Combining AZD4547 with FGF19 siRNA or with a selective FGFR4 inhibitor led to significantly reduced cell proliferation in A2780-CP20 cells. CONCLUSIONS: This study showed that AZD4547 has significant anti-cancer effects in drug-sensitive cells and PDX models but not in drug-resistant EOC cells. In drug-resistant cells, the expression level of c-Met or FGF19/FGFR4 may be a predictive biomarker for AZD4547 treatment response, and a combination strategy of drugs targeting c-Met or FGF19/FGFR4 together with AZD4547 may be an effective therapeutic strategy for EOC.

2.
Gynecol Oncol ; 188: 60-70, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936282

RESUMO

OBJECTIVE: Ovarian cancer, a leading cause of cancer-related deaths in women, remains a formidable challenge, especially in the context of platinum-resistant disease. This study investigated the potential of the benzimidazole derivative BNZ-111 as a novel treatment strategy for platinum-resistant ovarian cancer. METHODS: The human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with BNZ-111, and cell proliferation, apoptosis, and cell cycle were assessed. RESULTS: It demonstrated strong cytotoxicity in both chemo-sensitive and chemo-resistant epithelial ovarian cancer cell lines, inducing apoptosis and G2/M cell cycle arrest. In vivo experiments using orthotopic and patient-derived xenograft models showed significant tumor growth inhibition without apparent toxicity to vital organs. Unlike paclitaxel, BNZ-111 proved effective in paclitaxel-resistant cells, potentially by bypassing interaction with MDR1 and modulating ß-3 tubulin expression to suppress microtubule dynamics. CONCLUSION: BNZ-111, with favorable drug-like properties, holds promise as a therapeutic option for platinum-resistant ovarian cancer, addressing a critical clinical need in gynecologic oncology.

3.
Gynecol Oncol ; 165(2): 270-280, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305818

RESUMO

OBJECTIVE: Poly (ADP)-ribose polymerase inhibitors (PARPi) are effective clinical agents for treatment of epithelial ovarian cancer (EOC) harboring BRCA mutations as well as those without BRCA mutations. In this study, we evaluate the efficacy of combined PARPi and DNA methyltransferase inhibitor (DNMTi) in EOCs. METHODS: Expression levels of DNMT1 and PARP1 proteins in EOC cells were assessed using western blot analysis and immunohistochemistry. To evaluate the effects of co-treatment of PARPi (olaparib) and DNMTi (5-azacitidine, 5-AZA), we performed cell proliferation, apoptosis, and wound-healing assays in EOC cells. In addition, we performed in vivo experiments using both cell-line and patient-derived xenograft (PDX) models of EOC. RESULTS: The combination of olaparib and 5-AZA significantly inhibited cell proliferation and migration and induced apoptosis compared with olaparib or 5-AZA alone in EOC cell lines including A2780, HeyA8, A2780-CP20, and HeyA8-MDR. Moreover, in vivo experiments with this combination showed significantly decreased weight and nodule numbers of tumors in cell-line xenograft models with A2780 cells and a PDX model compared with control, olaparib, and 5-AZA groups. As a potential mechanism, the expression of intracellular reactive oxygen species (ROS) and its related proteins, including p-ERK, NRF2, p-p38, HO-1, and γH2AX, was affected in EOC cells. CONCLUSIONS: Co-treatment with PARPi and DNMTi had a significant anti-tumor effect in EOC cells. This combination might be a potential therapeutic strategy for EOCs.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Difosfato de Adenosina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , DNA , Feminino , Humanos , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ribose/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Gynecol Oncol ; 162(1): 173-181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972086

RESUMO

BACKGROUND: The patient-derived xenograft (PDX) model is a promising translational platform for duplicating the characteristics of primary tumors. Here, we established and characterized PDX models of uterine cancer to demonstrate their utility for preclinical drug testing. MATERIALS AND METHODS: We generated PDX tumors surgically derived from 58 cases of uterine cancer. Subrenal capsule xenografts and primary tumors were compared using microscopic examination, short tandem repeat analyses, and targeted sequencing analyses. A phosphatidylinositol 3-kinase (PI3K) inhibitor was administered to mice whose PDX tumors harbored a PTEN deletion or PIK3CA mutation. We also generated an orthotopic PDX model using uterine horn implantation. RESULTS: Thirty-three (56.9%) PDXs were successfully generated and passaged to maintain tumors. The histological features of the PDX tumors were stable over subsequent passages. By contrast, the proportions of epithelial and mesenchymal components of carcinosarcoma PDX models varied by generation. Targeted sequencing analyses revealed that all mutated cancer-related genes were stable during establishment and subgrafting. Treatment with a PI3K inhibitor cased a significant decrease in tumor weight in the clear cell carcinoma PDX harboring a frameshift PTEN deletion (p = 0.049) and in the serous carcinoma PDX harboring a missense PI3KCA mutation (p = 0.003) compared with matched controls. We also successfully established orthotopic PDX models (3/3; 100.0%). CONCLUSIONS: The histological and genetic features of PDXs were similar to those of primary tumors. This model is a promising translational platform for preclinical testing of new anticancer drugs and will enable the personalized development of therapeutic options for uterine cancer.


Assuntos
Ensaio de Cápsula Sub-Renal/métodos , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/patologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Mutação Puntual , Transplante Heterólogo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
6.
Int J Cancer ; 137(1): 221-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25429856

RESUMO

Sphingosine kinase 1 (SK1) is over-expressed in multiple types of human cancer. SK1 has growth-promoting effects and has been proposed as a potential therapeutic target. We investigated the therapeutic effects of SK1 inhibition in epithelial ovarian carcinoma (EOC). SK1 siRNA or inhibitors were tested in EOC cell lines, including A2780, SKOV3ip1, A2780-CP20, SKOV3-TR, ES2 and RMG2. Cells were treated with SK inhibitor or FTY720, and cell proliferation, apoptosis, angiogenesis and invasion were examined by MTT, FACS, ELISA and wound-healing assays, respectively. In vivo experiments were performed to test the effects of FTY720 on tumor growth in orthotopic mouse xenografts of EOC cell lines A2780 or SKOV3ip1 and a patient-derived xenograft (PDX) model of clear cell ovarian carcinoma (CCC). Blocking SK1 with siRNA or inhibitors significantly reduced proliferation, angiogenesis and invasion, and increased apoptosis in chemosensitive (A2780 and SKOV3ip1) and chemoresistant (A2780-CP20, SKOV3-TR, ES2 and RMG2) EOC cells. SK1 inhibitors also decreased the intracellular enzymatic activity of SK1. Furthermore, FTY720 treatment significantly decreased the in vivo tumor weight in xenograft models of established cell lines (A2780 and SKOV3ip1) and a PDX model for CCC compared to control (p < 0.05). These results support therapeutic targeting of SK1 as a potential new strategy for EOC.


Assuntos
Adenocarcinoma de Células Claras/tratamento farmacológico , Imunossupressores/administração & dosagem , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Propilenoglicóis/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Esfingosina/análogos & derivados , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Propilenoglicóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno , Esfingosina/administração & dosagem , Esfingosina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Gynecol Oncol ; 135(1): 108-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014541

RESUMO

OBJECTIVE: The renin-angiotensin system (RAS) influences cardiovascular homeostasis, and Angiotensin II type 1 receptor (AGTR1) is the main effector of RAS, and AGTR2 antagonizes AGTR1. Accumulating evidence supports the role of RAS in the paracrine regulation of tumorigenesis in several cancer types. Although treatment with AGTR1 antagonist (losartan) or AGTR2 agonist (CGP42112A) inhibits tumor progression in several cancer cells, their combined treatment has not been reported. METHODS: In this study, we estimated the expression of AGTR1 and AGTR2 in epithelial ovarian cancer cells and tissues. Then, we evaluated the anti-cancer effects of combined treatment with losartan and/or CGP42112A in ovarian cancer cells and human umbilical vein endothelial cells (HUVEC). RESULTS: AGTR1 protein was detected in 86% of ovarian cancer tissues, while AGTR2 was not detected in immunohistochemistry. The mRNA expression of AGTR1 obtained from the cancer genome atlas (TCGA) dataset showed that AGTR1 overexpression was correlated with poor survival. Treatment with either losartan or CGP42112A reduced the angiotensin II (Ang II)-mediated cell survival in both ovarian cancer cells and HUVEC. Combined treatment with losartan and CGP42112A synergistically decreased cell survival. As a downstream pathway, phosphorylation of phospholipase C ß3 (PLC ß3) and expression of vascular endothelial growth factor (VEGF) decreased synergistically in combined treatment. CONCLUSION: The results suggest that dual regulation of AGTR1 and AGTR2 may be a novel therapeutic strategy for epithelial ovarian carcinoma through inhibition of cancer cell survival as well as anti-angiogenesis. TRANSLATIONAL RELEVANCE: This study investigated the expressions of AGTR1 and AGTR2 in epithelial ovarian carcinoma and the therapeutic potential of AGTR modulation with specific antagonist and/or agonist in epithelial ovarian cancer cells. Treatment of AGTR1 antagonist, losartan and/or AGTR2 agonist, CGP42112A synergistically mediated anti-cancer effects including the decrease of cell survival and down-regulation of VEGF.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Losartan/uso terapêutico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Receptor Tipo 1 de Angiotensina/biossíntese , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/biossíntese , Carcinoma Epitelial do Ovário , Células Cultivadas , Progressão da Doença , Quimioterapia Combinada , Feminino , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular
8.
Biomed Pharmacother ; 168: 115792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924789

RESUMO

Ulipristal acetate (UPA) is a selective progesterone receptor modulator and is used for the treatment of uterine leiomyoma (a benign tumor). Uterine sarcoma which is highly malignant cancer with a poor prognosis is clinically resembled with uterine leiomyoma. There has been no experimental research on the effect of UPA on uterine sarcoma. In this study, we examined the efficacy of UPA in uterine sarcoma with in vitro and in vivo animal models. Cytotoxicity of UPA was determined in uterine sarcoma cell lines (MES-SA, SK-UT-1, and SK-LMS-1). Apoptotic genes and signaling pathways affected by UPA were analyzed by complementary DNA (cDNA) microarray of uterine sarcoma cell lines and western blot, respectively. An in vivo efficacy of UPA was examined with uterine sarcoma cell line- and patient-derived xenograft (PDX) mice models. UPA inhibited cell growth in uterine sarcoma cell lines and primary culture cells from a PDX mouse (PDX-C). cDNA microarray analysis revealed that CCL2 was highly down-regulated by UPA. Phosphorylation and the total expression of STAT3 were inhibited by UPA. UPA also inhibited CCL2 and STAT3 in PDX-C. The inhibitory effect of UPA had not changed in the overexpression of PR and treatment of progesterone. In vivo efficacy studies with cell line-derived xenografts and a PDX model with leiomyosarcoma, a typical uterine sarcoma, demonstrated that UPA significantly decreased tumor growth. UPA had significant anti-tumor effects in uterine sarcoma through the inhibition of STAT3/CCL2 signaling pathway and might be a potential therapeutic agent to treat this disease.


Assuntos
Leiomioma , Sarcoma , Neoplasias Uterinas , Feminino , Humanos , Animais , Camundongos , Receptores de Progesterona/metabolismo , DNA Complementar/farmacologia , DNA Complementar/uso terapêutico , Neoplasias Uterinas/patologia , Leiomioma/patologia , Transdução de Sinais , Morte Celular , Sarcoma/tratamento farmacológico , Quimiocina CCL2/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
J Gynecol Oncol ; 34(5): e58, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37170725

RESUMO

OBJECTIVE: Fenbendazole (FZ) has potential anti-cancer effects, but its poor water solubility limits its use for cancer therapy. In this study, we investigated the anti-cancer effect of FZ with different drug delivery methods on epithelial ovarian cancer (EOC) in both in vitro and in vivo models. METHODS: EOC cell lines were treated with FZ and cell proliferation was assessed. The effect of FZ on tumor growth in cell line xenograft mouse model of EOC was examined according to the delivery route, including oral and intraperitoneal administration. To improve the systemic delivery of FZ by converting fat-soluble drugs to hydrophilic, we prepared FZ-encapsulated poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (FZ-PLGA-NPs). We investigated the preclinical efficacy of FZ-PLGA-NPs by analyzing cell proliferation, apoptosis, and in vivo models including cell lines and patient-derived xenograft (PDX) of EOC. RESULTS: FZ significantly decreased cell proliferation of both chemosensitive and chemoresistant EOC cells. However, in cell line xenograft mouse models, there was no effect of oral FZ treatment on tumor reduction. When administered intraperitoneally, FZ was not absorbed but aggregated in the intraperitoneal space. We synthesized FZ-PLGA-NPs to obtain water solubility and enhance drug absorption. FZ-PLGA-NPs significantly decreased cell proliferation in EOC cell lines. Intravenous injection of FZ-PLGA-NP in xenograft mouse models with HeyA8 and HeyA8-MDR significantly reduced tumor weight compared to the control group. FZ-PLGA-NPs showed anti-cancer effects in PDX model as well. CONCLUSION: FZ-incorporated PLGA nanoparticles exerted significant anti-cancer effects in EOC cells and xenograft models including PDX. These results warrant further investigation in clinical trials.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Fenbendazol/uso terapêutico , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Água
10.
Biomaterials ; 296: 122087, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924663

RESUMO

The development of organoid culture technologies has triggered industrial interest in ex vivo drug test-guided clinical response prediction for precision cancer therapy. The three-dimensional culture encapsulated with basement membrane (BM) components is extremely important in establishing ex vivo organoids and drug sensitivity tests because the BM components confer essential structures resembling tumor histopathology. Although numerous studies have demonstrated three-dimensional culture-based drug screening methods, establishing a large-scale drug-screening platform with matrix-encapsulated tumor cells is challenging because the arrangement of microspots of a matrix-cell droplet onto each well of a microwell plate is inconsistent and difficult to standardize. In addition, relatively low scales and lack of reproducibility discourage the application of three-dimensional organoid-based drug screening data for precision treatment or drug discovery. To overcome these limitations, we manufactured an automated organospotter-integrated high-throughput organo-on-pillar (high-TOP) drug-screening platform. Our system is compatible with various extracellular matrices, including BM extract, Matrigel, collagen, and hydrogel. In addition, it can be readily utilized for high-content analyses by simply exchanging the bottom plates without disrupting the domes. Our system demonstrated considerable robustness, consistency, reproducibility, and biological relevancy in three-dimensional drug sensitivity analyses using Matrigel-encapsulated ovarian cancer cell lines. We also demonstrated proof-of-concept cases representing the clinical feasibility of high-TOP-assisted ex vivo drug tests linked to clinical chemo-response in ovarian cancer patients. In conclusion, our platform provides an automated and standardized method for ex vivo drug-sensitivity-guided clinical response prediction, suggesting effective chemotherapy regimens for patients with cancer.


Assuntos
Técnicas de Cultura de Células , Neoplasias Ovarianas , Feminino , Humanos , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Avaliação Pré-Clínica de Medicamentos/métodos , Descoberta de Drogas , Organoides , Neoplasias Ovarianas/patologia , Ensaios de Triagem em Larga Escala/métodos
11.
Gynecol Oncol ; 124(1): 125-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22015043

RESUMO

OBJECTIVE: Increased expression of miR-200c was recently reported in endometrial carcinoma compared with normal tissues. In this study, we evaluated the role of miR-200c in cell growth and drug sensitivity in endometrial carcinoma and investigated the underlying mechanisms. METHODS: The expression of miR-200c in human endometrial tissues was detected by quantitative RT-PCR. The transfection with anti-miRNA (anti-miR) or the premature form of miRNA (pre-miR) was performed to regulate the level of expression of miRNA-200c in endometrial carcinoma cells, HEC-1A and Ishikawa. To identify the target genes for miR-200c, we performed mRNA microarray after pre-miR-200c transfection in HEC-1A cells. RESULTS: We found that miR-200c expression was increased in endometrial carcinoma compared with normal endometrial tissues. Anti-miR or pre-miR-200c could regulate cell survival, proliferation, and apoptosis and affect cytotoxicity in endometrial cancer cells. Through mRNA microarray analysis, we found that miR-200c inhibits the expression of BRD7, which was recently reported as a potential tumor suppressor gene. MiR-200c regulated the translocation of ß-catenin from the cytoplasm to the nucleus via inhibition of BRD7, resulting in increased expression of its transcriptional target genes, cyclinD1 and c-myc. CONCLUSION: The interaction between miR-200c and BRD7 might have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/biossíntese , Citoplasma/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Genes bcl-1 , Genes myc , Humanos , MicroRNAs/biossíntese , Transfecção , Regulação para Cima , beta Catenina/metabolismo
12.
Gynecol Oncol ; 126(1): 124-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525818

RESUMO

OBJECTIVE: MicroRNA-155 (miR-155) is one of the micro RNAs (miRNA) most consistently involved in neoplastic diseases, and it is known to repress the angiotensin II type 1 receptor (AGTR1). The aim of the present study was to evaluate the expressions of miR-155 and AGTR1, and to clarify the potential efficacy of anti-miR-155, alone and in combination with AGTR1 blocker losartan in endometrial cancers. METHODS: Expressions of miR-155 and AGTR1 were evaluated using real-time PCR and immunohistochemistry. And the MTT assay was performed in endometrial cancer cells following anti-miR-155 and AGTR1 blocker (losartan) treatment, alone and in combination. RESULTS: miR-155 was over-expressed and AGTR1 was underexpressed in endometrial carcinoma tissues. AGTR1 immunoreactivity was found in six of ten (60.0%) normal endometrium, 11 of 14 (78.6%) endometrial hyperplasia, and 27 of 62 (43.5%) endometrial carcinoma tissues (P=0.051), and patients with AGTR1 expression showed trend towards improved survival after multivariate analysis (P=0.08). We checked that abolishing the function of miR-155 and AGTR1 by anti-miR-155 or losartan inhibited cell survival of endometrial carcinoma cells, respectively, and furthermore, combined treatment showed synergistic effects. CONCLUSIONS: In this study, we characterized the expressions of miR-155 and AGTR1 in endometrial tissues. The combined treatment with anti-miR-155 and losartan has a synergistic antiproliferative effect and an improved understanding is required to clarify whether miR-155 and AGTR1 can be used as a novel therapeutic target in endometrial cancer.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Neoplasias do Endométrio/terapia , Losartan/uso terapêutico , MicroRNAs/biossíntese , Oligonucleotídeos Antissenso/administração & dosagem , Receptor Tipo 1 de Angiotensina/biossíntese , Receptores de Angiotensina/genética , Terapia Combinada , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Análise de Sequência de DNA , Transfecção
13.
Clin Cancer Res ; 28(17): 3850-3861, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727598

RESUMO

PURPOSE: To evaluate the anticancer effects of cabozantinib, temozolomide, and their combination in uterine sarcoma cell lines and mouse xenograft models. EXPERIMENTAL DESIGN: Human uterine sarcoma cell lines (SK-LMS-1, SK-UT-1, MES-SA, and SKN) were used to evaluate the anticancer activity of cabozantinib, temozolomide, and their combination. The optimal dose of each drug was determined by MTT assay. Cell proliferation and apoptosis were assessed 48 and 72 hours after the drug treatments. The tumor weights were measured in an SK-LMS-1 xenograft mouse model and a patient-derived xenograft (PDX) model of leiomyosarcoma treated with cabozantinib, temozolomide, or both. RESULTS: Given individually, cabozantinib and temozolomide each significantly decreased the growth and viability of cells. This inhibitory effect was more pronounced when cabozantinib (0.50 µmol/L) and temozolomide (0.25 or 0.50 mmol/L) were co-administered (P < 0.05). The combination of the drugs also significantly increased apoptosis in all cells. Moreover, this effect was consistently observed in patient-derived leiomyosarcoma cells. In vivo studies with SK-LMS-1 cell xenografts and the PDX model with leiomyosarcoma demonstrated that combined treatment with cabozantinib (5 mg/kg/d, per os administration) and temozolomide (5 mg/kg/d, per os administration) synergistically decreased tumor growth (both P < 0.05). CONCLUSIONS: The addition of cabozantinib to temozolomide offers synergistic anticancer effects in uterine sarcoma cell lines and xenograft mouse models, including PDX. These results warrant further investigation in a clinical trial.


Assuntos
Leiomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Neoplasias Uterinas , Anilidas , Animais , Apoptose , Linhagem Celular Tumoral , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/metabolismo , Camundongos , Piridinas , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Temozolomida/farmacologia , Neoplasias Uterinas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Biomark ; 35(1): 99-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912727

RESUMO

BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.


Assuntos
Lisina-tRNA Ligase , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Moléculas de Adesão Celular , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/genética
15.
Gynecol Oncol ; 120(1): 56-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035172

RESUMO

OBJECTIVE: Recent reports suggest that targeting the unique miRNAs highly expressed in several cancers may be a promising approach in the development of new cancer therapeutic tools. The purpose of this study was to evaluate the roles of miRNAs as therapeutic targets in human endometrial endometrioid carcinomas (EECs). METHODS: We evaluated the differential expressions of miRNAs in EECs and normal endometrial tissues using microarrays and cluster analysis. After validation of differentially expressed miRNAs in another set of EECs and normal endometrial tissues, we performed the in vitro experiment using endometrial cancer cells with anti-miRNA (anti-miR) to evaluate the roles of miRNAs that are highly expressed in EECs for cell proliferation and chemosensitivity. RESULTS: A miRNA microarray showed that the miR-200 family, including hsa-miR-141, hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, and hsa-miR-429, was up-regulated in EECs as compared with that in normal endometrial tissues. When we treated endometrial cancer cells with specific anti-miRs, including anti-miR-141, -200a, -200b, -200c, or -429, we found that anti-miR-200a, -200b, -200c, and -429 significantly inhibited the growth of HEC-1A cells and anti-miR-141, -200c, and -429 significantly inhibited the growth of Ishikawa cells. Moreover, transfection with anti-miR-429 enhanced the cytotoxic effect of cisplatin in HEC-1A cells. CONCLUSIONS: These results indicate that the miR-200 family is highly expressed in EECs compared with that of normal endometrial tissues and could play an important role in cancer growth. Specifically, anti-miR-429 could enhance the cytotoxic activity with cisplatin in EECs. Therefore, the miR-200 family may offer new candidate targets to be exploited in therapeutic strategies for patients with these carcinomas.


Assuntos
Carcinoma Endometrioide/genética , Neoplasias do Endométrio/genética , MicroRNAs/biossíntese , Adulto , Idoso , Antineoplásicos/farmacologia , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/terapia , Processos de Crescimento Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Terapia Combinada , Sinergismo Farmacológico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/terapia , Feminino , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transfecção , Regulação para Cima
16.
Gynecol Obstet Invest ; 71(1): 11-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21160189

RESUMO

BACKGROUND: To identify a molecular marker associated with volumetric changes to radiotherapy (RT) in cervical cancer, we compared gene expression profiles of an early response (ER) group with a late response (LR) group, which are defined by complete and partial disappearance of a primary cervical lesion on MRI performed 1 month after completion of RT. METHODS: Microarray analysis of mRNA expression profiles was performed in 17 patients (11 in the ER and 6 in the LR group). After selection of the genes with significant differential expression, we evaluated the association of the selected genes with radioresistance in clinical specimens. RESULTS: We identified 53 genes with differential expression on microarray analysis using the permutation test with t statistics (p ≤ 0.01). Using immunohistochemistry, we evaluated the expression of RAR-ß, one of the genes selected among the differentially expressed genes. RAR-ß expression was significantly down-regulated in the LR group compared with the ER group (p = 0.02). However, this gene did not predict permanent radioresistance (p = 0.19). CONCLUSIONS: RAR-ß expression might be a valuable marker for the prediction of early volumetric changes to RT in cervical carcinomas. Further search for additional genes associated with early volumetric changes and radioresistance may aid in refining individual treatment strategies.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Receptores do Ácido Retinoico/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Receptores do Ácido Retinoico/metabolismo , Neoplasias do Colo do Útero/patologia
17.
Pharmaceutics ; 12(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086573

RESUMO

PURPOSE: To investigate the anti-cancer effects of tetraarsenic hexoxide (TAO, As4O6) in cervical cancer cell lines and in a series of patient-derived xenograft (PDX) mouse models. METHODS: Human cervical cancer cell lines, including HeLa, SiHa and CaSki, and human umbilical vein endothelial cells (HUVECs), were used to evaluate the anti-cancer activity of TAO. Cellular proliferation, apoptosis, and enzyme-linked immunosorbent assay (ELISA) for matrix metallopeptidase 2 (MMP-2) and 9 (MMP-9) were assessed. The tumor weights of the PDXs that were given TAO were measured. The PDXs included primary squamous cell carcinoma, primary adenocarcinoma, recurrent squamous cell carcinoma, and recurrent adenocarcinoma. RESULTS: TAO significantly decreased cellular proliferation and increased apoptosis in cervical cancer cell lines and HUVEC. The functional studies on the cytotoxicity of TAO revealed that it inhibited the activation of Akt and vascular endothelial growth factor receptor 2 (VEGFR2). It also decreased the concentrations of MMP-2 in both cervical cancer cell lines and HUVECs. Active caspase-3 and p62 were both increased by the treatment of TAO, indicating increased rates of apoptosis and decreased rates of autophagy, respectively. In vivo studies with PDXs revealed that TAO significantly decreased tumor weight for both primary squamous cell carcinoma and adenocarcinoma of the cervix. However, this anti-cancer effect was not seen in PDXs with recurrent cancers. Nevertheless, the combination of TAO with cisplatin significantly decreased tumor weight in PDX models for both primary and recurrent cancers. CONCLUSIONS: TAO exerted inhibitory effects on angiogenesis, cellular migration, and autophagy, and it showed stimulatory effects on apoptosis. Overall, it demonstrated anti-cancer effects in animal models for human cervical cancer.

18.
Cell Death Dis ; 11(12): 1034, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277461

RESUMO

Overcoming drug-resistance is a big challenge to improve the survival of patients with epithelial ovarian cancer (EOC). In this study, we investigated the effect of chloroquine (CQ) and its combination with cisplatin (CDDP) in drug-resistant EOC cells. We used the three EOC cell lines CDDP-resistant A2780-CP20, RMG-1 cells, and CDDP-sensitive A2780 cells. The CQ-CDDP combination significantly decreased cell proliferation and increased apoptosis in all cell lines. The combination induced expression of γH2AX, a DNA damage marker protein, and induced G2/M cell cycle arrest. Although the CQ-CDDP combination decreased protein expression of ATM and ATR, phosphorylation of ATM was increased and expression of p21WAF1/CIP1 was also increased in CQ-CDDP-treated cells. Knockdown of p21WAF1/CIP1 by shRNA reduced the expression of γH2AX and phosphorylated ATM and inhibited caspase-3 activity but induced ATM protein expression. Knockdown of p21WAF1/CIP1 partly inhibited CQ-CDDP-induced G2/M arrest, demonstrating that knockdown of p21WAF1/CIP1 overcame the cytotoxic effect of the CQ-CDDP combination. Ectopic expression of p21WAF1/CIP1 in CDDP-treated ATG5-shRNA/A2780-CP20 cells increased expression of γH2AX and caspase-3 activity, demonstrating increased DNA damage and cell death. The inhibition of autophagy by ATG5-shRNA demonstrated similar results upon CDDP treatment, except p21WAF1/CIP1 expression. In an in vivo efficacy study, the CQ-CDDP combination significantly decreased tumor weight and increased expression of γH2AX and p21WAF1/CIP1 in A2780-CP20 orthotopic xenografts and a drug-resistant patient-derived xenograft model of EOC compared with controls. These results demonstrated that CQ increases cytotoxicity in combination with CDDP by inducing lethal DNA damage by induction of p21WAF1/CIP1 expression and autophagy inhibition in CDDP-resistant EOC.


Assuntos
Autofagia/genética , Cloroquina/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p21/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Regulação para Cima/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloroquina/farmacologia , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/genética , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 10(1): 4904, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184452

RESUMO

Axitinib, small molecule tyrosine kinase inhibitor, demonstrates anti-cancer activity for various solid tumors. We investigated anti-cancer effect of axitinib in epithelial ovarian cancer (EOC). We treated EOC cells (A2780, HeyA8, RMG1, and HeyA8-MDR) with axitinib to evaluate its effects on cell viabilty, apoptosis and migration. Western blots were performed to assess VEGFR2, ERK, and AKT levels, and ELISA and FACS to evaluate apoptosis according to axitinib treatment. In addition, in vivo experiments in xenografts using A2780, RMG1, and HeyA8-MDR cell lines were performed. We repeated the experiment with patient-derived xenograft models (PDX) of EOC. Axitinib significantly inhibited cell survival and migration, and increased apoptosis in EOC cells. The expression of VEGFR2 and phosphorylation of AKT and ERK in A2780, RMG1, and HeyA8 were decreased with axitinib treatment in dose-dependent manner, but not in HeyA8-MDR. In in vivo experiments, axitinib significantly decreased tumor weight in xenograft models of drug-sensitive (A2780), and clear cell carcinoma (RMG1) and PDX models for platinum sensitive EOC compared to control, but was not effective in drug-resistant cell line (HeyA8-MDR) or heavily pretreated refractory PDX model. Axitinib showed significant anti-cancer effects in drug-sensitive or clear cell EOC cells via inhibition of VEGFR signals associated with cell proliferation, apoptosis and migration, but not in drug-resistant cells.


Assuntos
Axitinibe/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Clin Cancer Res ; 14(9): 2535-42, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451214

RESUMO

PURPOSE: MicroRNAs (miRNA) are small noncoding RNAs that are 18 to 25 nucleotides in length; they regulate the stability or translational efficiency of target mRNAs. Emerging evidence suggests that miRNAs might be involved in the pathogenesis of a variety of human cancers. EXPERIMENTAL DESIGN: In this study, we profiled miRNA expression in 10 early stage invasive squamous cell carcinomas (ISCC) and 10 normal cervical squamous epithelial specimens using TaqMan real-time quantitative PCR array methods. In order to evaluate the role of miR-199a, one of the most significantly overexpressed in ISCCs, we transfected cervical cancer cells (SiHa and ME-180) with anti-miR-199a oligonucleotides and assessed the cell viability. RESULTS: We found 70 genes (68 up-regulated, 2 down-regulated) with significantly different expression in the ISCCs compared with normal samples (P < 0.05). When we analyzed the expression of the 10 most significant miRNAs in 31 ISCCs, increased miR-127 expression was significantly associated with lymph node metastasis (P = 0.006). Transfection of anti-miR-199a oligonucleotides to cervical cancer cells suppressed cell growth in vitro, which was potentiated with the anticancer agent cisplatin. CONCLUSIONS: Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, they may offer new candidate targets to be exploited for both prognostic and therapeutic strategies in patients with cervical cancer.


Assuntos
Carcinoma de Células Escamosas/genética , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Colo do Útero/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA