Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Org Chem ; 85(5): 2945-2955, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32020803

RESUMO

Despite its importance in the design of photocaged molecules, less attention is focused on linker chemistry than the cage itself. Here, we describe unique uncaging properties displayed by two coumarin-caged thymidine compounds, each conjugated with (2) or without (1) an extended, self-immolative spacer. Photolysis of 1 using long-wavelength UVA (365 nm) or visible (420, 455 nm) light led to the release of free thymidine along with the competitive generation of a thymidine-bearing recombination product. The occurrence of this undesired side reaction, which is previously unreported, was not present with the photolysis of 2, which released thymidine exclusively with higher quantum efficiency. We propose that the spatial separation between the cage and the substrate molecule conferred by the extended linker can play a critical role in circumventing this unproductive reaction. This report reinforces the importance of linker selection in the design of coumarin-caged oligonucleosides and other conjugates.


Assuntos
Cumarínicos , Fotólise , Timidina
2.
Org Biomol Chem ; 17(16): 3951-3963, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30942252

RESUMO

Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.

3.
Biochemistry ; 57(18): 2723-2732, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29651842

RESUMO

Despite its potent antibacterial activities against drug-resistant Gram-positive pathogens, oritavancin remains partially understood with respect to its primary mode of hydrogen bond interaction with a cell-wall peptide regarding the role of its lipophilic 4'-chlorobiphenyl moiety. Here we report a surface plasmon resonance (SPR) study performed in two cell-wall model surfaces, each prepared by immobilization with a vancomycin-susceptible Lys-d-Ala-d-Ala or vancomycin-resistant Lys-d-Ala-d-Lac peptide. Analysis of binding kinetics performed on the peptide surface showed that oritavancin bound ∼100-1000-fold more tightly than vancomycin on each model surface. Ligand competition experiments conducted by SPR and fluorescence spectroscopy provided evidence that such affinity enhancement can be attributed to its 4'-chlorobiphenyl moiety, possibly through a hydrophobic interaction that led to a gain of free energy with a contribution from enthalpy as suggested by a variable-temperature SPR experiment. On the basis of these findings, we propose a model for the bivalent motifs of interaction of oritavancin with cell-wall peptides, by which the drug molecule can retain a strong interaction even with the vancomycin-resistant peptide. In summary, this study advances our understanding of oritavancin and offers new insight into the significance of bivalent motifs in the design of glycopeptide antibiotics.


Assuntos
Parede Celular/química , Glicopeptídeos/química , Peptídeos/química , Vancomicina/química , Antibacterianos/química , Parede Celular/efeitos dos fármacos , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Cinética , Ligantes , Lipoglicopeptídeos , Estrutura Molecular , Peptídeos/uso terapêutico , Ligação Proteica , Ressonância de Plasmônio de Superfície , Vancomicina/uso terapêutico , Resistência a Vancomicina/efeitos dos fármacos
4.
Langmuir ; 34(24): 7135-7146, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792710

RESUMO

Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van)4 bound most tightly with a KD of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van)1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.


Assuntos
Bactérias/química , Parede Celular/química , Dendrímeros/química , Fenômenos Mecânicos , Peptídeos/metabolismo , Vancomicina/química , Peptídeos/química
5.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060457

RESUMO

Singlet oxygen (1 O2 ), as an important kind of reactive oxygen species (ROS) and main therapeutic agent in photodynamic therapy (PDT), only have a half-life of 40 ns and an effective radius of 20 nm, which cause significant obstacles for improving PDT efficacy. In this work, novel upconversion nanoparticle (UCN)-based nanoplatforms are developed with a minimized distance between UCNs and a photosensitizer, protoporphyrin IX (PpIX), and a controllable payload of PpIX, to enhance and control ROS production. The ability of the nanoplatform to target different subcellular organelles such as cell membrane and mitochondria is demonstrated via surface modification of the nanoplatform with different targeting ligands. The results show that the mitochondria-targeting nanoplatforms result in significantly increased capability of both tumor cell killing and inhibition of tumor growth. Subcellular targeting of nanoparticles leads to the death of cancer cells in different manners. However, the efficiency of ROS generation almost have no influence on the tumor cell viability during the period of evaluation. These findings suggest that specific subcellular targeting of the nanoplatforms enhances the PDT efficacy more effectively than the increase of ROS production, and may shed light on future novel designs of effective and controllable PDT nanoplatforms.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/química , Espécies Reativas de Oxigênio , Oxigênio Singlete/farmacologia
6.
Chembiochem ; 18(1): 126-135, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902870

RESUMO

Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho-nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6-nitroverataldehyde, three drug-fluorophore conjugates were synthesized: Taxol-TNB-fluorescein, Taxol-TNB-coumarin, and doxorubicin-TNB-coumarin, and long-wavelength UVA light-triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell-based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real-time monitoring of drug activation at the delivery site.


Assuntos
Benzaldeídos/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Liberação Controlada de Fármacos/efeitos da radiação , Corantes Fluorescentes/química , Humanos , Cinética , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/toxicidade , Fotólise/efeitos da radiação , Raios Ultravioleta
7.
Bioconjug Chem ; 28(6): 1649-1657, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28398751

RESUMO

Multivalent interactions involve the engagement of multiple ligand-receptor pairs and are important in synthetic biology as design paradigms for targeted nanoparticles (NPs). However, little is known about the specific ligand parameters important to multivalent interactions. We employed a series of oligonucleotides as ligands conjugated to dendrimers as nanoparticles, and used complementary oligonucleotides on a functionalized SPR surface to measure binding. We compared the effect of ligand affinity to ligand number on the avidity characteristics of functionalized NPs. Changing the ligand affinity, either by changing the temperature of the system or by substitution noncomplementary base pairs into the oligonucleotides, had little effect on multivalent interaction; the overall avidity, number of ligands required for avidity per particle, and the number of particles showing avidity did not significantly change. We then made NP conjugates with the same oligonucleotide using an efficient copper-free click chemistry that resulted in essentially all of the NPs in the population exceeding the threshold ligand value. The particles exceeding the threshold ligand number again demonstrated high avidity interactions. This work validates the concept of a threshold ligand valence and suggests that the number of ligands per nanoparticle is the defining factor in achieving high avidity interactions.


Assuntos
Dendrímeros/química , Nanopartículas/química , Oligonucleotídeos/química , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Ligantes
8.
Bioconjug Chem ; 28(12): 3016-3028, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29148732

RESUMO

Despite their proven ability for precise and targeted release, nanoplatform systems for photocontrolled delivery often face formidable synthetic challenges, in part due to the paucity of advanced linker strategies. Here, we report on a novel linker strategy using a thioacetal ortho-nitrobenzaldehyde (TNB) cage, demonstrating its application for delivery of doxorubicin (Dox) in two nanoscale systems. This photocleavable linker, TNB(OH), which presents two identical arms, each terminated with a hydroxyl functionality, was prepared in a single step from 6-nitroveratraldehyde. TNB(OH) was used to cross-link Dox to a folate receptor (FAR)-targeting poly(amidoamine) dendrimer conjugate G5(FA)n=5.4(Dox)m=5.1, and also used to prepare an upconversion nanocrystal (UCN) conjugate, UCN-PPIX@(Dox)(G5FA), a larger core/shell nanostructure. In this core/shell nanostructure, the UCN core emits UV and visible light luminescence upon near-infrared (NIR) excitation, allowing for the photocleavage of the TNB linker as well as the photostimulation of protoporphyrin IX (PPIX) coupled as a cytotoxic photosensitizer. Drug-release experiments performed in aqueous solutions with long-wavelength ultraviolet A (UVA) light showed that Dox release occurred rapidly from its TNB linked form or from its dendrimer conjugated form with comparable decay kinetics. Cellular toxicity studies in FAR-overexpressing KB carcinoma cells demonstrated that each nanoconjugate lacked intrinsic cytotoxicity until exposed to UVA or NIR (980 nm) (for the UCN nanoconjugate), which resulted in induction of potent cytotoxicity. In summary, this new TNB strategy offers synthetic convenience in drug conjugation chemistry with the ability for the temporal control of drug activation at the delivery site.


Assuntos
Acetais/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Fólico/metabolismo , Nanomedicina , Fotólise , Benzaldeídos/química , Dendrímeros/química , Portadores de Fármacos/metabolismo , Humanos , Células KB
9.
Small ; 11(45): 6078-90, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26476917

RESUMO

Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.


Assuntos
Dendrímeros/química , Liberação Controlada de Fármacos , Receptor 1 de Folato/metabolismo , Imageamento Tridimensional , Luz , Nanopartículas/química , Espectroscopia de Luz Próxima ao Infravermelho , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Endocitose , Citometria de Fluxo , Ácido Fólico/química , Humanos , Cinética , Microscopia Confocal , Nanopartículas/ultraestrutura
10.
Mol Pharm ; 12(12): 4498-508, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26485315

RESUMO

Despite extensive studies on drug delivery using multivalent complexation systems, the biophysical basis for release kinetics remains poorly defined. The present study addresses this aspect involved in the complexation of a fifth generation poly(amidoamine) (PAMAM) dendrimer with atropine, an essential antidote used for treating organophosphate poisoning. First, we designed (1)H NMR titration studies for determining the molecular basis of the drug complexation with a glutarate-modified anionic dendrimer. These provide evidence pointing to a combination of electrostatic and hydrophobic interactions as the driving forces for dendrimer complexation with the alkaloid drug molecule. Second, using LC-MS/MS spectrometry, we determined the dissociation constants (KD) at steady state and also measured the drug release kinetics of atropine complexes with four negatively charged dendrimer types. Each of these dendrimers has a high payload capacity for up to ∼ 100 atropine molecules. However, the affinity of the atropine to the carrier was highly dependent on the drug to dendrimer ratio. Thus, a complex made at a lower loading ratio (≤ 0.1) displayed greater atropine affinity (KD ≈ µM) than other complexes prepared at higher ratios (>10), which showed only mM affinity. This negative cooperative variation in affinity is tightly associated with the nonlinear release kinetics observed for each complex in which drug release occurs more slowly at the later time phase at a lower loading ratio. In summary, the present study provides novel insights on the cooperativity as the mechanistic basis for nonlinear release kinetics observed in multivalent carrier systems.


Assuntos
Atropina/química , Dendrímeros/química , Preparações Farmacêuticas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células KB , Cinética , Espectroscopia de Ressonância Magnética/métodos , Eletricidade Estática , Espectrometria de Massas em Tandem/métodos
11.
Int J Mol Sci ; 16(1): 1772-90, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25590303

RESUMO

The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Metotrexato/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/química , Dendrímeros/química , Dendrímeros/metabolismo , Portadores de Fármacos/química , Receptores de Folato com Âncoras de GPI/química , Ácido Fólico/química , Humanos , Metotrexato/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo
12.
Mol Pharm ; 11(11): 4049-58, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25222480

RESUMO

Generation 5 poly(amidoamine) (G5 PAMAM) methotrexate (MTX) conjugates employing two small molecular linkers, G5-(COG-MTX)n, G5-(MFCO-MTX)n were prepared along with the conjugates of the G5-G5 (D) dimer, D-(COG-MTX)n, D-(MFCO-MTX)n. The monomer G5-(COG-MTX)n conjugates exhibited only a weak, rapidly reversible binding to folate binding protein (FBP) consistent with monovalent MTX binding. The D-(COG-MTX)n conjugates exhibited a slow onset, tight-binding mechanism in which the MTX first binds to the FBP, inducing protein structural rearrangement, followed by polymer-protein van der Waals interactions leading to tight-binding. The extent of irreversible binding is dependent on total MTX concentration and no evidence of multivalent MTX binding was observed.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dendrímeros/química , Dendrímeros/metabolismo , Metotrexato/química , Poliaminas/química , Calorimetria , Humanos , Metotrexato/metabolismo , Ressonância Magnética Nuclear Biomolecular , Poliaminas/metabolismo , Proteínas de Ligação a RNA , Ressonância de Plasmônio de Superfície
13.
Mol Pharm ; 11(5): 1696-706, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24725205

RESUMO

Multivalent conjugation of folic acid has been employed to target cells overexpressing folate receptors. Such polymer conjugates have been previously demonstrated to have high avidity to folate binding protein. However, the lack of a monovalent folic acid-polymer material has prevented a full binding analysis of these conjugates, as multivalent binding mechanisms and polymer-mass mechanisms are convoluted in samples with broad distributions of folic acid-to-dendrimer ratios. In this work, the synthesis of a monovalent folic acid-dendrimer conjugate allowed the elucidation of the mechanism for increased binding between the folic acid-polymer conjugate and a folate binding protein surface. The increased avidity is due to a folate-keyed interaction between the dendrimer and protein surfaces that fits into the general framework of slow-onset, tight-binding mechanisms of ligand/protein interactions.


Assuntos
Dendrímeros/química , Ácido Fólico/química , Proteínas de Transporte , Modelos Teóricos , Ligação Proteica
14.
Biomacromolecules ; 15(11): 4134-45, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25285357

RESUMO

Poly(amido amine) (PAMAM) dendrimers constitute an important class of nonviral, cationic vectors in gene delivery. Here we report on a new concept for dendrimer vector design based on the incorporation of dual binding motifs: DNA intercalation, and receptor recognition for targeted delivery. We prepared a series of dendrimer conjugates derived from a fifth generation (G5) PAMAM dendrimer, each conjugated with multiple folate (FA) or riboflavin (RF) ligands for cell receptor targeting, and with 3,8-diamino-6-phenylphenanthridinium ("DAPP")-derived ligands for anchoring a DNA payload. Polyplexes of each dendrimer with calf thymus dsDNA were made and characterized by surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurement. These studies provided evidence supporting polyplex formation based on the observation of tight DNA-dendrimer adhesion, and changes in particle size and surface charge upon coincubation. Further SPR studies to investigate the adhesion of the polyplex to a model surface immobilized with folate binding protein (FBP), demonstrated that the DNA payload has only a minimal effect on the receptor binding activity of the polyplex: KD = 0.22 nM for G5(FA)(DAPP) versus 0.98 nM for its polyplex. Finally, we performed in vitro transfection assays to determine the efficiency of conjugate mediated delivery of a luciferase-encoding plasmid into the KB cancer cell line and showed that RF-conjugated dendrimers were 1 to 2 orders of magnitude more effective in enhancing luciferase gene transfection than a plasmid only control. In summary, this study serves as a proof of concept for DNA-ligand intercalation as a motif in the design of multivalent dendrimer vectors for targeted gene delivery.


Assuntos
Dendrímeros/administração & dosagem , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Motivos de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dendrímeros/química , Vetores Genéticos/química , Humanos , Células KB
15.
Biomacromolecules ; 14(3): 654-64, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23391096

RESUMO

Paclitaxel (Taxol) is an anticancer drug that induces mitotic arrest via microtubule hyperstabilization but causes side effects due to its hydrophobicity and cellular promiscuity. The targeted cytotoxicity of hydrophilic paclitaxel-conjugated polyamidoamine (PAMAM) dendrimers has been demonstrated in cultured cancer cells. Mechanisms of action responsible for this cytotoxicity are unknown, that is, whether the cytotoxicity is due to paclitaxel stabilization of microtubules, as is whether paclitaxel is released intracellularly from the dendrimer. To determine whether the conjugated paclitaxel can bind microtubules, we used a combination of ensemble and single microtubule imaging techniques in vitro. We demonstrate that these conjugates adversely affect microtubules by (1) promoting the polymerization and stabilization of microtubules in a paclitaxel-dependent manner, and (2) bundling preformed microtubules in a paclitaxel-independent manner, potentially due to protonation of tertiary amines in the dendrimer interior. Our results provide mechanistic insights into the cytotoxicity of paclitaxel-conjugated PAMAM dendrimers and uncover unexpected risks of using such conjugates therapeutically.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Dendrímeros/efeitos adversos , Dendrímeros/química , Paclitaxel/efeitos adversos , Paclitaxel/química , Animais , Bovinos , Sistemas de Liberação de Medicamentos/métodos , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nanopartículas/química , Polimerização , Tubulina (Proteína)/isolamento & purificação , Tubulina (Proteína)/metabolismo
16.
Molecules ; 18(9): 10707-20, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24005965

RESUMO

The ability of poly(amido amine) (or PAMAM) dendrimers to condense semiflexible dsDNA and penetrate cell membranes gives them great potential in gene therapy and drug delivery but their high positive surface charge makes them cytotoxic. Here, we describe the effects of partial neutralization by acetylation on DNA condensation using light scattering, circular dichroism, and single molecule imaging of dendrimer-DNA complexes combed onto surfaces and tethered to those surfaces under flow. We find that DNA can be condensed by generation-five (G5) dendrimers even when the surface charges are more than 65% neutralized, but that such dendrimers bind negligibly when an end-tethered DNA is stretched in flow. We also find that when fully charged dendrimers are introduced by flow to end-tethered DNA, all DNA molecules become equally highly coated with dendrimers at a rate that becomes very fast at high dendrimer concentration, and that dendrimers remain bound during subsequent flow of dendrimer-free buffer. These results suggest that the presence of dendrimer-free DNA coexisting with dendrimer-bound DNA after bulk mixing of the two in solution may result from diffusion-limited irreversible dendrimer-DNA binding, rather than, or in addition to, the previously proposed cooperative binding mechanism of dendrimers to DNA.


Assuntos
DNA/química , Dendrímeros/química , Acetilação , Animais , Bacteriófago lambda , Dicroísmo Circular , Difusão , Técnicas de Transferência de Genes , Ácidos Nucleicos Imobilizados/química , Luz , Tamanho da Partícula , Salmão , Espalhamento de Radiação
17.
Mol Pharm ; 9(9): 2669-2676, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22827500

RESUMO

Our previous studies have demonstrated that a generation 5 dendrimer (G5) conjugated with both folic acid (FA) and methotrexate (MTX) has a higher chemotherapeutic index than MTX alone. Despite this, batch-to-batch inconsistencies in the number of FA and MTX molecules linked to each dendrimer led to conjugate batches with varying biological activity, especially when scaleup synthesis was attempted. Since the MTX is conjugated through an ester linkage, there were concerns that biological inconsistency could also result from serum esterase activity and differential bioavailability of the targeted conjugate. In order to resolve these problems, we undertook a novel approach to synthesize a polyvalent G5-MTX(n) conjugate through click chemistry, attaching the MTX to the dendrimer through an esterase-stable amide linkage. Surface plasmon resonance binding studies show that a G5-MTX(10) conjugate synthesized in this manner binds to the FA receptor (FR) through polyvalent interaction showing 4300-fold higher affinity than free MTX. The conjugate inhibits dihydrofolate reductase, and induces cytotoxicity in FR-expressing KB cells through FR-specific cellular internalization. Thus, the polyvalent MTX on the dendrimer serves the dual role as a targeting molecule as well as a chemotherapeutic drug. The newly synthesized G5-MTX(n) conjugate may serve as a FR-targeted chemotherapeutic with potential for cancer therapy.


Assuntos
Dendrímeros/química , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Metotrexato/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Dendrímeros/administração & dosagem , Esterases/sangue , Humanos , Células KB , Metotrexato/administração & dosagem , Terapia de Alvo Molecular/métodos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
18.
Biomacromolecules ; 13(2): 507-16, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22191428

RESUMO

The present study describes the biophysical characterization of generation-five poly(amidoamine) (PAMAM) dendrimers conjugated with riboflavin (RF) as a cancer-targeting platform. Two new series of dendrimers were designed, each presenting the riboflavin ligand attached at a different site (isoalloxazine at N-3 and d-ribose at N-10) and at varying ligand valency. Isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) were used to determine the binding activity for riboflavin binding protein (RfBP) in a cell-free solution. The ITC data shows dendrimer conjugates have K(D) values of ≥ 465 nM on a riboflavin basis, an affinity ~93-fold lower than that of free riboflavin. The N-3 series showed greater binding affinity in comparison with the N-10 series. Notably, the affinity is inversely correlated with ligand valency. These findings are also corroborated by DSC, where greater protein-conjugate stability is achieved with the N-3 series and at lower ligand valency.


Assuntos
Sistemas de Liberação de Medicamentos , Flavinas/química , Riboflavina/química , Ribose/química , Varredura Diferencial de Calorimetria , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Soluções , Termodinâmica
19.
Photochem Photobiol Sci ; 11(4): 653-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22234658

RESUMO

Nanoparticle (NP)-based targeted drug delivery involves cell-specific targeting followed by a subsequent therapeutic action from the therapeutic carried by the NP system. NPs conjugated with methotrexate (MTX), a potent inhibitor of dihydrofolate reductase (DHFR) localized in cytosol, have been under investigation as a delivery system to target cancer cells to enhance the therapeutic index of methotrexate, which is otherwise non-selectively cytotoxic. Despite improved therapeutic activity from MTX-conjugated NPs in vitro and in vivo, the therapeutic action of these conjugates following cellular entry is poorly understood; in particular it is unclear whether the therapeutic activity requires release of the MTX. This study investigates whether MTX must be released from a nanoparticle in order to achieve the therapeutic activity. We report herein light-controlled release of methotrexate from a dendrimer-based conjugate and provide evidence suggesting that MTX still attached to the nanoconjugate system is fully able to inhibit the activity of its enzyme target and the growth of cancer cells.


Assuntos
Dendrímeros/química , Antagonistas do Ácido Fólico/toxicidade , Metotrexato/toxicidade , Nanoconjugados/química , Tetra-Hidrofolato Desidrogenase/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Humanos , Nanoconjugados/toxicidade , Neoplasias/tratamento farmacológico , Fotólise , Espectrofotometria Ultravioleta , Tetra-Hidrofolato Desidrogenase/metabolismo , Raios Ultravioleta
20.
Bioorg Med Chem Lett ; 22(2): 1213-8, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22178551

RESUMO

A multivalent approach was applied to the design of long-acting inhaled ß(2)-adrenoceptor agonists. A series of dimeric arylethanolamines based on the short acting ß(2)-adrenoceptor agonist albuterol were prepared, varying the nature and length of the linker between the basic nitrogens. None of the C(2)-symmetric dimers demonstrated increased potency, however dimer 5j, derived from 4-phenethylamine, was found to have increased binding potency in vitro relative to the parent monomer. Optimization of this structure led to the identification of 22 (milveterol) which demonstrates high potency in vitro and long duration of action in a guinea pig model of bronchoprotection.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Descoberta de Drogas , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Agonistas de Receptores Adrenérgicos beta 2/síntese química , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Antiasmáticos/síntese química , Antiasmáticos/química , Linhagem Celular , Cobaias , Humanos , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA