Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(35): 8805-8810, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104362

RESUMO

During heart development and regeneration, coronary vascularization is tightly coupled with cardiac growth. Although inhibiting vascularization causes defects in the innate regenerative response of zebrafish to heart injury, angiogenic signals are not known to be sufficient for triggering regeneration events. Here, by using a transgenic reporter strain, we found that regulatory sequences of the angiogenic factor vegfaa are active in epicardial cells of uninjured animals, as well as in epicardial and endocardial tissue adjacent to regenerating muscle upon injury. Additionally, we find that induced cardiac overexpression of vegfaa in zebrafish results in overt hyperplastic thickening of the myocardial wall, accompanied by indicators of angiogenesis, epithelial-to-mesenchymal transition, and cardiomyocyte regeneration programs. Unexpectedly, vegfaa overexpression in the context of cardiac injury enabled ectopic cardiomyogenesis but inhibited regeneration at the site of the injury. Our findings identify Vegfa as one of a select few known factors sufficient to activate adult cardiomyogenesis, while also illustrating how instructive factors for heart regeneration require spatiotemporal control for efficacy.


Assuntos
Cardiomegalia/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Transição Epitelial-Mesenquimal , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Development ; 140(3): 660-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23293297

RESUMO

Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor ß signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.


Assuntos
Proliferação de Células , Coração/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Miócitos Cardíacos/citologia , Regeneração , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/fisiologia , Biomarcadores/metabolismo , Catecóis/farmacologia , Contagem de Células , Cicloexilaminas/farmacologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Feminino , Coração/embriologia , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Isoquinolinas/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tiofenos/farmacologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transgenes , Ubiquitinação , Peixe-Zebra/genética , Peixe-Zebra/lesões , Peixe-Zebra/fisiologia
3.
Nature ; 450(7167): E1-2; discussion E2-4, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994032

RESUMO

In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.


Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Mães , Ligantes da Sinalização Nodal , Ovário/metabolismo , Óvulo/metabolismo , Splicing de RNA , Reprodutibilidade dos Testes , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
Neuron ; 57(1): 41-55, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18184563

RESUMO

MicroRNAs (miRNAs) are highly expressed in vertebrate neural tissues, but the contribution of specific miRNAs to the development and function of different neuronal populations is still largely unknown. We report that miRNAs are required for terminal differentiation of olfactory precursors in both mouse and zebrafish but are dispensable for proper function of mature olfactory neurons. The repertoire of miRNAs expressed in olfactory tissues contains over 100 distinct miRNAs. A subset, including the miR-200 family, shows high olfactory enrichment and expression patterns consistent with a role during olfactory neurogenesis. Loss of function of the miR-200 family phenocopies the terminal differentiation defect observed in absence of all miRNA activity in olfactory progenitors. Our data support the notion that vertebrate tissue differentiation is controlled by conserved subsets of organ-specific miRNAs in both mouse and zebrafish and provide insights into control mechanisms underlying olfactory differentiation in vertebrates.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , MicroRNAs/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/citologia , Fatores Etários , Animais , Embrião não Mamífero , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , MicroRNAs/classificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condutos Olfatórios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Peixe-Zebra
5.
Dev Cell ; 48(6): 853-863.e5, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30713073

RESUMO

Attaining proper organ size during development and regeneration hinges on the activity of mitogenic factors. Here, we performed a large-scale chemical screen in embryonic zebrafish to identify cardiomyocyte mitogens. Although commonly considered anti-proliferative, vitamin D analogs like alfacalcidol had rapid, potent mitogenic effects on embryonic and adult cardiomyocytes in vivo. Moreover, pharmacologic or genetic manipulation of vitamin D signaling controlled proliferation in multiple adult cell types and dictated growth rates in embryonic and juvenile zebrafish. Tissue-specific modulation of vitamin D receptor (VDR) signaling had organ-restricted effects, with cardiac VDR activation causing cardiomegaly. Alfacalcidol enhanced the regenerative response of injured zebrafish hearts, whereas VDR blockade inhibited regeneration. Alfacalcidol activated cardiac expression of genes associated with ErbB2 signaling, while ErbB2 inhibition blunted its effects on cell proliferation. Our findings identify vitamin D as mitogenic for cardiomyocytes and other cell types in zebrafish and indicate a mechanism to regulate organ size and regeneration.


Assuntos
Coração/anatomia & histologia , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração/efeitos dos fármacos , Vitamina D/farmacologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Mitógenos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
6.
Circ Cardiovasc Genet ; 8(4): 544-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025024

RESUMO

BACKGROUND: Left ventricular noncompaction (LVNC) is an autosomal-dominant, genetically heterogeneous cardiomyopathy with variable severity, which may co-occur with cardiac hypertrophy. METHODS AND RESULTS: Here, we generated whole exome sequence data from multiple members from 5 families with LVNC. In 4 of 5 families, the candidate causative mutation segregates with disease in known LVNC genes MYH7 and TPM1. Subsequent sequencing of MYH7 in a larger LVNC cohort identified 7 novel likely disease causing variants. In the fifth family, we identified a frameshift mutation in NNT, a nuclear-encoded mitochondrial protein, not implicated previously in human cardiomyopathies. Resequencing of NNT in additional LVNC families identified a second likely pathogenic missense allele. Suppression of nnt in zebrafish caused early ventricular malformation and contractility defects, probably driven by altered cardiomyocyte proliferation. In vivo complementation studies showed that mutant human NNT failed to rescue nnt morpholino-induced heart dysfunction, indicating a probable haploinsufficiency mechanism. CONCLUSIONS: Together, our data expand the genetic spectrum of LVNC and demonstrate how the intersection of whole exome sequence with in vivo functional studies can accelerate the identification of genes that drive human genetic disorders.


Assuntos
Mutação da Fase de Leitura , Predisposição Genética para Doença/genética , Miocárdio Ventricular não Compactado Isolado/genética , NADP Trans-Hidrogenase Específica para A ou B/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Exoma/genética , Saúde da Família , Feminino , Teste de Complementação Genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia Confocal , Proteínas Mitocondriais/genética , Linhagem , Análise de Sequência de DNA , Peixe-Zebra/embriologia , Peixe-Zebra/genética
7.
Dev Cell ; 34(4): 387-99, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26256209

RESUMO

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Assuntos
Neurônios Colinérgicos/fisiologia , Coração/inervação , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Denervação , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética , Inflamação/genética , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Fator de Crescimento Neural/farmacologia , Neuregulina-1/farmacologia , Regeneração/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vagotomia , Peixe-Zebra
8.
Curr Top Dev Biol ; 100: 319-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22449849

RESUMO

The heart is a pump that is comprised of cardiac myocytes and other cell types and whose proper function is critical to quality of life. The ability to trigger regeneration of heart muscle following injury eludes adult mammals, a deficiency of great clinical impact. Major research efforts are attempting to change this through advances in cell therapy or activating endogenous regenerative mechanisms that exist only early in life. In contrast with mammals, lower vertebrates like zebrafish demonstrate an impressive natural capacity for cardiac regeneration throughout life. This review will cover recent progress in the field of heart regeneration with a focus on endogenous regenerative capacity and its potential manipulation.


Assuntos
Coração/fisiologia , Regeneração , Animais , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/terapia , Humanos
9.
Science ; 318(5848): 271-4, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17761850

RESUMO

MicroRNAs (miRNAs) repress hundreds of target messenger RNAs (mRNAs), but the physiological roles of specific miRNA-mRNA interactions remain largely elusive. We report that zebrafish microRNA-430 (miR-430) dampens and balances the expression of the transforming growth factor-beta (TGF-beta) Nodal agonist squint and the TGF-beta Nodal antagonist lefty. To disrupt the interaction of specific miRNA-mRNA pairs, we developed target protector morpholinos complementary to miRNA binding sites in target mRNAs. Protection of squint or lefty mRNAs from miR-430 resulted in enhanced or reduced Nodal signaling, respectively. Simultaneous protection of squint and lefty or absence of miR-430 caused an imbalance and reduction in Nodal signaling. These findings establish an approach to analyze the in vivo roles of specific miRNA-mRNA pairs and reveal a requirement for miRNAs in dampening and balancing agonist/antagonist pairs.


Assuntos
MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Regiões 3' não Traduzidas , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica , Fatores de Determinação Direita-Esquerda , Mutação , Proteína Nodal , Ligantes da Sinalização Nodal , RNA Mensageiro/genética , Fator de Crescimento Transformador beta/agonistas , Fator de Crescimento Transformador beta/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
10.
Electrophoresis ; 26(6): 1144-54, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15704246

RESUMO

We report the development of a hand-held instrument capable of performing two simultaneous microchip separations (gel and zone electrophoresis), and demonstrate this instrument for the detection of protein biotoxins. Two orthogonal analysis methods are chosen over a single method in order to improve the probability of positive identification of the biotoxin in an unknown mixture. Separations are performed on a single fused-silica wafer containing two separation channels. The chip is housed in a microfluidic manifold that utilizes o-ring sealed fittings to enable facile and reproducible fluidic connection to the chip. Sample is introduced by syringe injection into a septum-sealed port on the device exterior that connects to a sample loop etched onto the chip. Detection of low nanomolar concentrations of fluorescamine-labeled proteins is achieved using a miniaturized laser-induced fluorescence detection module employing two diode lasers, one per separation channel. Independently controlled miniature high-voltage power supplies enable fully programmable electrokinetic sample injection and analysis. As a demonstration of the portability of this instrument, we evaluated its performance in a laboratory field test at the Defence Science and Technology Laboratory with a series of biotoxin variants. The two separation methods cleanly distinguish between members of a biotoxin test set. Analysis of naturally occurring variants of ricin and two closely related staphylococcal enterotoxins indicates the two methods can be used to readily identify ricin in its different forms and can discriminate between two enterotoxin isoforms.


Assuntos
Eletroforese em Microchip/métodos , Técnicas Analíticas Microfluídicas/métodos , Toxinas Biológicas/isolamento & purificação , Eletroforese em Microchip/instrumentação , Enterotoxinas/isolamento & purificação , Reutilização de Equipamento , Miniaturização , Ricina/isolamento & purificação , Ricinus/química , Sensibilidade e Especificidade , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA