Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chromatogr A ; 1503: 49-56, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28499597

RESUMO

In this study, ultrahigh-molecular-weight (MW) (>107Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching. The MW of the copolymers prepared using emulsion polymerization (107-109Da) was generally larger than that of copolymers prepared using solution polymerization (4×107-108Da). When the amount of cationic monomer was increased from 10 to 55mol% in solution polymerization, hydrophobic contraction of the core induced formation of more compact C-PAMs. The copolymers prepared using emulsion polymerization formed highly aggregated or supercoil structures owing to increased intermolecular hydrophobic interaction when less cationic monomer was used. However, the MW decreased with increased cationic group content. In addition, C-PAMs larger than ∼108Da prepared using the emulsion method were separated by steric/hyperlayer elution mode while those in the 107-108Da range were analyzed in either normal or steric/hyperlayer mode depending on the decay patterns of field programming. Moreover, branched copolymers were found to be resolved with different elution modes under the same field decay pattern depending on the degree of branching: steric/hyperlayer for low-branching and normal for high-branching C-PAMs.


Assuntos
Resinas Acrílicas/química , Fracionamento por Campo e Fluxo , Luz , Polímeros/química , Espalhamento de Radiação , Cátions/química , Peso Molecular , Purificação da Água
2.
J Chromatogr A ; 1429: 304-10, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26724894

RESUMO

In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).


Assuntos
Resinas Acrílicas/análise , Técnicas de Química Analítica/métodos , Fracionamento por Campo e Fluxo , Luz , Espalhamento de Radiação , Cátions , Conformação Molecular , Peso Molecular , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA