Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Hematol ; : 104253, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879112

RESUMO

Acute myeloid leukemias are a group of hematological malignancies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FMS-like tyrosine kinase 3 (FLT3) gene has led to the development of tyrosine kinase inhibitors such as quizartinib. However, achieving complete remission in patients remains challenging because these new tyrosine kinase inhibitors (TKIs) are unable to completely eradicate all leukemic cells. Residual leukemic cells persist during quizartinib treatment, leading to the rapid emergence of drug-resistant leukemia. Given that mitochondrial oxidative metabolism promotes the survival of leukemic cells after exposure to multiple anticancer drugs, we characterized the metabolism of leukemic cells that persisted during quizartinib treatment and developed metabolic strategies to eradicate them. In our study, employing biochemical and metabolomics approaches, we confirmed that the survival of leukemic cells treated with FLT3 inhibitors critically depends on maintaining mitochondrial metabolism, specifically through glutamine oxidation. We uncovered a synergistic interaction between the FLT3 inhibitor quizartinib and L-asparaginase, operating through antimetabolic mechanisms. Utilizing various models of persistent leukemia, we demonstrated that leukemic cells resistant to quizartinib are susceptible to L-asparaginase. This combined therapeutic strategy shows promise in reducing the development of resistance to FLT3 inhibitors, offering a potential strategy to enhance treatment outcomes.

2.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205590

RESUMO

Pancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia. Of them, calcium (Ca2+) signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer. Mutations or aberrant expression of key proteins that control Ca2+ levels can cause deregulation of Ca2+-dependent effectors that control signaling pathways determining the cells' behavior in a way that promotes pathophysiological cancer hallmarks, such as enhanced proliferation, survival and invasion. So far, it is essentially unknown how the cancer-associated Ca2+ signaling is regulated within the characteristic landscape of PDAC. This work provides a complete overview of the Ca2+ signaling and its main players in PDAC. Special consideration is given to the Ca2+ signaling as a potential target in PDAC treatment and its role in drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA