Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728666

RESUMO

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cruzamento , Proteínas e Peptídeos de Choque Frio/genética , Temperatura Baixa , Retículo Endoplasmático , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Oryza/citologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência
2.
EMBO J ; 42(1): e110518, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36341575

RESUMO

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Assuntos
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Temperatura Baixa , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Mol Cell ; 66(1): 7-8, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388442

RESUMO

In this issue of Molecular Cell, Liu et al. (2017) show that the cold-activated plasma membrane protein kinase CRPK1 phosphorylates 14-3-3 proteins, triggering its nuclear translocation to impair the stabilization of the transcription factor CBFs for a feedback excessive cold defense response during the freezing in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Aclimatação , Arabidopsis/genética , Plantas Geneticamente Modificadas
4.
New Phytol ; 241(5): 2143-2157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173177

RESUMO

The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.


Assuntos
Oryza , Oryza/genética , Locos de Características Quantitativas , Fenótipo , Genes de Plantas , Plântula/genética , Temperatura Baixa
5.
J Exp Bot ; 75(13): 4038-4051, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490694

RESUMO

Chilling stress caused by extreme weather is threatening global rice (Oryza sativa L.) production. Identifying components of the signal transduction pathways underlying chilling tolerance in rice would advance molecular breeding. Here, we report that OsMST6, which encodes a monosaccharide transporter, positively regulates the chilling tolerance of rice seedlings. mst6 mutants showed hypersensitivity to chilling, while OsMST6 overexpression lines were tolerant. During chilling stress, OsMST6 transported more glucose into cells to modulate sugar and abscisic acid signaling pathways. We showed that the transcription factor OsERF120 could bind to the DRE/CRT element of the OsMST6 promoter and activate the expression of OsMST6 to positively regulate chilling tolerance. Genetically, OsERF120 was functionally dependent on OsMST6 when promoting chilling tolerance. In summary, OsERF120 and OsMST6 form a new downstream chilling regulatory pathway in rice in response to chilling stress, providing valuable findings for molecular breeding aimed at achieving global food security.


Assuntos
Temperatura Baixa , Proteínas de Transporte de Monossacarídeos , Oryza , Proteínas de Plantas , Plântula , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plântula/fisiologia , Plântula/genética , Plântula/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas
6.
Theor Appl Genet ; 136(1): 19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36680595

RESUMO

KEY MESSAGE: Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Locos de Características Quantitativas , Genes de Plantas , Haplótipos , Parede Celular , Temperatura Baixa
7.
Analyst ; 148(22): 5724-5730, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37840316

RESUMO

Although hydrogen sulfide (H2S) is a well-known toxic gas, its vital role as a gas transmitter in various physiological and pathological processes of living systems cannot be ignored. Relevant investigations indicate that endogenous H2S is involved in the development of ulcerative colitis pathology and is overexpressed in ulcerative colitis, and hence can be considered as an ulcerative colitis biomarker. Herein, an isophorone-xanthene-based NIR fluorescent probe (IX-H2S) was constructed to image H2S. Owing to its large conjugated structure, the probe exhibits a near-infrared emission wavelength of 770 nm with a large Stokes shift (186 nm). Moreover, IX-H2S has excellent selectivity for the detection of H2S without interference from other analytes including thiols. In addition, the probe has been successfully applied not only in fluorescence imaging of endogenous and exogenous H2S in living cells, but also in imaging of H2S in normal and ulcerative colitis mice. Encouraged by the eminent performance, IX-H2S is expected to be a potent "assistant" for the diagnosis of ulcerative colitis.


Assuntos
Colite Ulcerativa , Sulfeto de Hidrogênio , Humanos , Camundongos , Animais , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/diagnóstico , Células HeLa , Mitocôndrias , Imagem Óptica
8.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30150325

RESUMO

Post-translational modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc transferases (OGTs). O-GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O-GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O-GlcNAc modification to augment ATX1-mediated H3K4me3 histone modification at FLC locus. SEC transfers an O-GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post-translational O-GlcNAc modification-mediated mechanism for regulation of HKMT activity and establish the function of O-GlcNAc signaling in epigenetic processes in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Glicosilação , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Metilação , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética
9.
New Phytol ; 234(1): 77-92, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067957

RESUMO

Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.


Assuntos
Endosperma , Oryza , Endosperma/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Ceras/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(32): 15967-15972, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341087

RESUMO

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.


Assuntos
Meiose , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fuso Acromático/metabolismo , Quebras de DNA de Cadeia Dupla , Haploidia , Cinetocoros/metabolismo , Modelos Biológicos , Mutação/genética
11.
Plant Cell Environ ; 44(2): 491-505, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150964

RESUMO

Improving chilling tolerance is a major target of rice breeding. The OsMAPK3-OsbHLH002-OsTPP1 signalling pathway enhances chilling tolerance in rice: the kinase is activated by cold stress, and subsequently the transcription factor is phosphorylated by the activated kinase, triggering the expression of cold response genes. However, it is largely unknown how this pathway is suppressed in time to avoid it being in a continuously activated state. We found that a novel type 2C protein phosphatase, OsPP2C27, functions as a negative regulator of the OsMAPK3-OsbHLH002-OsTPP1 pathway. A dynamic change in OsMAPK3 activity was found during cold treatment. We show that OsPP2C27 interacts physically with and dephosphorylates OsMAPK3 in vitro and in vivo. Interestingly, OsPP2C27 can also directly dephosphorylate OsbHLH002, the target of OsMAPK3. After cold treatment, survival rates were higher in OsPP2C27-RNAi lines and a T-DNA insertion mutant, and lower in OsPP2C27-overexpression lines, compared to wild type. Moreover, expression of the OsTPP1 and OsDREBs were increased in OsPP2C27-RNAi lines and decreased in OsPP2C27-overexpression lines. These results indicate that cold-induced OsPP2C27 negatively regulates the OsMAPK3-OsbHLH002-OsTPP1 signalling pathway by directly dephosphorylating both phospho-OsMAPK3 and phospho-OsbHLH002, preventing the sustained activation of a positive pathway for cold stress and maintaining normal growth under chilling conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Transdução de Sinais , Temperatura Baixa , Oryza/anatomia & histologia , Oryza/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Salino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 47(10): 5001-5015, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30892623

RESUMO

Circadian clock coordinates numerous plant growth and developmental processes including cell elongation in the hypocotyl, whether or not it modulates cell proliferation is largely unknown. Here we have found that Pseudo Response Regulators (PRRs), essential components of circadian core oscillators, affect root meristem cell proliferation mediated by Target Of Rapamycin (TOR) signaling. The null mutants of PRRs display much reduced sensitivities to sugar-activated TOR signaling. We have subsequently identified Tandem Zinc Finger 1, encoding a processing body localized RNA-binding protein, as a direct target repressed by PRRs in mediating TOR signaling. Multiple lines of biochemical and genetic evidence have demonstrated that TZF1 acts downstream of PRRs to attenuate TOR signaling. Furthermore, TZF1 could directly bind TOR mRNA via its tandem zinc finger motif to affect TOR mRNA stability. Our findings support a notion that PRR-TZF1-TOR molecular axis modulates root meristem cell proliferation by integrating both transcriptional and post-transcriptional regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proliferação de Células/genética , Fosfatidilinositol 3-Quinases/genética , Raízes de Plantas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/genética , Meristema/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
13.
J Asian Nat Prod Res ; 23(4): 341-347, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124646

RESUMO

Two new dammarane-type triterpenoids, notoginsenoside SY1 (1) and notoginsenoside SY2 (2), were isolated from the stems and leaves of Panax notoginseng. Their structures were elucidated to be 3ß, 12ß-dihydroxy-22, 23, 24, 25, 26, 27-hexanordammarane-20-one 3-O-ß-D-xylopyranosyl-(1→2)-O-ß-D-glucopyranosyl-(1→2)-O-ß-D-glucopyranoside (1), 3ß, 12ß-dihydroxy-20S, 24 R-epoxydammar-25-ene 3-O-ß-D-xylopyranosyl-(1→2)-O-ß-D-glucopyranosyl-(1→2)-O-ß-D-glucopyranoside (2) by IR, HRESIMS and NMR experiments.[Formula: see text].


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Estrutura Molecular , Folhas de Planta , Damaranos
14.
J Asian Nat Prod Res ; 23(10): 961-967, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33030059

RESUMO

Two new dammarane-type triterpenoids, notoginsenoside SY3 (1) and notoginsenoside SY4 (2), were isolated from the steamed roots of Panax notoginseng. Their structures were determined to be 3ß, 12ß, 20(S)-trihydroxy-27-anordammar-23(24)(E)-ene-3-O-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside (1) and 3ß, 12ß, 20(S)-trihydroxy-25-methoxyldammar-23(24)(E)-ene-3-O-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside (2) by IR, HRESIMS and NMR experiments.


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Estrutura Molecular , Damaranos
15.
New Phytol ; 225(6): 2453-2467, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31736073

RESUMO

Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Ciclofilinas , Oryza , Proteínas de Plantas , Cloroplastos , Ciclofilinas/genética , Oryza/genética , Proteínas de Plantas/genética
16.
New Phytol ; 228(1): 163-178, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464682

RESUMO

Transport and homeostasis of transition metals in chloroplasts, which are accurately regulated to ensure supply and to prevent toxicity induced by these metals, are thus crucial for chloroplast function and photosynthetic performance. However, the mechanisms that maintain the balance of transition metals in chloroplasts remain largely unknown. We have characterized an albino-revertible green 1 (arg1) rice mutant. ARG1 encodes an evolutionarily conserved protein belonging to the ATP-binding cassette (ABC) transporter family. Protoplast transfection and immunogold-labelling assays showed that ARG1 is localized in the envelopes and thylakoid membranes of chloroplasts. Measurements of metal contents, metal transport, physiological and transcriptome changes revealed that ARG1 modulates cobalt (Co) and nickel (Ni) transport and homeostasis in chloroplasts to prevent excessive Co and Ni from competing with essential metal cofactors in chlorophyll and metal-binding proteins acting in photosynthesis. Natural allelic variation in ARG1 between indica and temperate japonica subspecies of rice is coupled with their different capabilities for Co transport and Co content within chloroplasts. This variation underpins the different photosynthetic capabilities in these subspecies. Our findings link the function of the ARG1 transporter to photosynthesis, and potentially facilitate breeding of rice cultivars with improved Co homeostasis and consequently improved photosynthetic performance.


Assuntos
Oryza , Transportadores de Cassetes de Ligação de ATP/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cobalto/metabolismo , Homeostase , Níquel/metabolismo , Níquel/toxicidade , Oryza/genética , Fotossíntese , Melhoramento Vegetal
17.
Plant Physiol ; 180(3): 1436-1449, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061102

RESUMO

O-GlcNAcylation and phosphorylation are two posttranslational modifications that antagonistically regulate protein function. However, the regulation of and the cross talk between these two protein modifications are poorly understood in plants. Here we investigated the role of O-GlcNAcylation during vernalization, a process whereby prolonged cold exposure promotes flowering in winter wheat (Triticum aestivum), and analyzed the dynamic profile of O-GlcNAcylated and phosphorylated proteins in response to vernalization. Altering O-GlcNAc signaling by chemical inhibitors affected the vernalization response, modifying the expression of VRN genes and subsequently affecting flowering transition. Over a vernalization time-course, O-GlcNAcylated and phosphorylated peptides were enriched from winter wheat plumules by Lectin weak affinity chromatography and iTRAQ-TiO2, respectively. Subsequent mass spectrometry and gene ontology term enrichment analysis identified 168 O-GlcNAcylated proteins that are mainly involved in responses to abiotic stimulus and hormones, metabolic processing, and gene expression; and 124 differentially expressed phosphorylated proteins that participate in translation, transcription, and metabolic processing. Of note, 31 vernalization-associated proteins were identified that carried both phosphorylation and O-GlcNAcylation modifications, of which the majority (97%) exhibited the coexisting module and the remainder exhibited the potential competitive module. Among these, TaGRP2 was decorated with dynamic O-GlcNAcylation (S87) and phosphorylation (S152) modifications, and the mutation of S87 and S152 affected the binding of TaGRP2 to the RIP3 motif of TaVRN1 in vitro. Our data suggest that a dynamic network of O-GlcNAcylation and phosphorylation at key pathway nodes regulate the vernalization response and mediate flowering in wheat.


Assuntos
Temperatura Baixa , Flores/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Triticum/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glicosilação , Fosforilação , Proteínas de Plantas/genética , Estações do Ano , Triticum/genética , Triticum/crescimento & desenvolvimento
18.
Plant J ; 95(1): 150-167, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752751

RESUMO

Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , Nicho de Células-Tronco/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas
19.
Plant Physiol ; 176(1): 946-959, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180380

RESUMO

Genetic improvement of plant architecture is one of the strategies for increasing the yield potential of rice (Oryza sativa). Although great progress has been made in the understanding of plant architecture regulation, the precise mechanism is still an urgent need to be revealed. Here, we report that over-expression of OsMIR396d in rice results in semidwarf and increased leaf angle, a typical phenotype of brassinosteroid (BR) enhanced mutant. OsmiR396d is involved in the interaction network of BR and gibberellin (GA) signaling. In OsMIR396d over-expression plants, BR signaling was enhanced. In contrast, both the signaling and biosynthesis of GA were impaired. BRASSINAZOLE-RESISTANT1, a core transcription activator of BR signaling, directly promoted the accumulation of OsmiR396d, which controlled BR response and GA biosynthesis by regulating the expression of different target genes respectively. GROWTH REGULATING FACTOR 6, one of OsmiR396d targets, participated in GA biosynthesis and signal transduction but was not directly involved in BR signaling. This study provides a new insight into the understanding of interaction between BR and GA from multiple levels on controlling plant architecture.


Assuntos
Brassinosteroides/metabolismo , Giberelinas/metabolismo , MicroRNAs/metabolismo , Oryza/anatomia & histologia , Oryza/metabolismo , Transdução de Sinais , Vias Biossintéticas , Divisão Celular , Tamanho Celular , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Oryza/citologia , Oryza/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
20.
J Integr Plant Biol ; 61(12): 1194-1200, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30912264

RESUMO

Calcineurin B-like interacting protein kinases (CIPKs) play important roles via environmental stress. However, less is known how to sense the stress in molecular structure conformation level. Here, an OsCIPK7 mutant via TILLING procedure with a point mutation in the kinase domain showed increased chilling tolerance, which could be potentially used in the molecular breeding. We found that this point mutation of OsCIPK7 led to a conformational change in the activation loop of the kinase domain, subsequently with an increase of protein kinase activity, thus conferred an increased tolerance to chilling stress.


Assuntos
Temperatura Baixa , Oryza/enzimologia , Oryza/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual/genética , Proteínas Quinases/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Plantas/metabolismo , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA