Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Pathog ; 17(5): e1009553, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015044

RESUMO

Bacterial infection results in a veritable cascade of host responses, both local and systemic. To study the initial stages of host-pathogen interaction in living tissue we use spatially-temporally controlled in vivo models. Using this approach, we show here that within 4 h of a uropathogenic Escherichia coli (UPEC) infection in the kidney, an IFNγ response is triggered in the spleen. This rapid infection-mediated inter-organ communication was found to be transmitted via nerve signalling. Bacterial expression of the toxin α-hemolysin directly and indirectly activated sensory neurons, which were identified in the basement membrane of renal tubules. Nerve activation was transmitted via the splenic nerve, inducing upregulation of IFNγ in the marginal zones of the spleen that led to increasing concentrations of IFNγ in the circulation. We found that IFNγ modulated the inflammatory signalling generated by renal epithelia cells in response to UPEC infection. This demonstrates a new concept in the host response to kidney infection; the role of nerves in sensing infection and rapidly triggering a systemic response which can modulate inflammation at the site of infection. The interplay between the nervous and immune systems is an exciting, developing field with the appealing prospect of non-pharmaceutical interventions. Our study identifies an important role for systemic neuro-immune communication in modulating inflammation during the very first hours of a local bacterial infection in vivo.


Assuntos
Infecções por Escherichia coli/complicações , Interações Hospedeiro-Patógeno , Inflamação/patologia , Interferon gama/metabolismo , Rim/microbiologia , Neuroimunomodulação , Baço/metabolismo , Animais , Células Epiteliais/microbiologia , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Escherichia coli Uropatogênica/fisiologia
2.
Sci Technol Adv Mater ; 24(1): 2246867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680974

RESUMO

Effective treatment of bacterial infections requires methods that accurately and quickly identify which antibiotic should be prescribed. This review describes recent research on the development of optotracing methodologies for bacterial and biofilm detection and diagnostics. Optotracers are small, chemically well-defined, anionic fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. This class of organic molecules (luminescent conjugated oligothiophenes) show unique electronic, electrochemical and optical properties originating from the conjugated structure of the compounds. The photophysical properties are further improved as donor-acceptor-donor (D-A-D)-type motifs are incorporated in the conjugated backbone. Optotracers bind their biopolymeric target molecules via electrostatic interactions. Binding alters the optical properties of these tracer molecules, shown as altered absorption and emission spectra, as well as ON-like switch of fluorescence. As the optotracer provides a defined spectral signature for each binding partner, a fingerprint is generated that can be used for identification of the target biopolymer. Alongside their use for in situ experimentation, optotracers have demonstrated excellent use in studies of a number of clinically relevant microbial pathogens. These methods will find widespread use across a variety of communities engaged in reducing the effect of antibiotic resistance. This includes basic researchers studying molecular resistance mechanisms, academia and pharma developing new antimicrobials targeting biofilm infections and tests to diagnose biofilm infections, as well as those developing antibiotic susceptibility tests for biofilm infections (biofilm-AST). By iterating between the microbial world and that of plants, development of the optotracing technology has become a prime example of successful cross-feeding across the boundaries of disciplines. As optotracers offers a capacity to redefine the way we work with polysaccharides in the microbial world as well as with plant biomass, the technology is providing novel outputs desperately needed for global impact of the threat of antimicrobial resistance as well as our strive for a circular bioeconomy.

3.
Chembiochem ; 23(11): e202100684, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298076

RESUMO

Optotracers are conformation-sensitive fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. Their binding to bacterial cell walls allows selective detection and visualisation of Staphylococcus aureus (S. aureus). Here, we investigated the structural properties providing optimal detection of S. aureus. We quantified spectral shifts and fluorescence intensity in mixes of bacteria and optotracers, using automatic peak analysis, cross-correlation, and area-under-curve analysis. We found that the length of the conjugated backbone and the number of charged groups, but not their distribution, are important factors for selective detection of S. aureus. The photophysical properties of optotracers were greatly improved by incorporating a donor-acceptor-donor (D-A-D)-type motif in the conjugated backbone. With significantly reduced background and binding-induced on-switch of fluorescence, these optotracers enabled real-time recordings of S. aureus growth. Collectively, this demonstrates that chemical structure and photophysics are key tunable characteristics in the development of optotracers for selective detection of bacterial species.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Staphylococcus aureus , Bactérias
4.
FEMS Microbes ; 4: xtad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333433

RESUMO

The urinary tract is a hydrodynamically challenging microenvironment and uropathogenic Escherichia coli (UPEC) must overcome several physiological challenges in order to adhere and establish a urinary tract infection. Our previous work in vivo revealed a synergy between different UPEC adhesion organelles, which facilitated effective colonization of the renal proximal tubule. To allow high-resolution real-time analysis of this colonization behavior, we established a biomimetic proximal-tubule-on-chip (PToC). The PToC allowed for single-cell resolution analysis of the first stages of bacterial interaction with host epithelial cells, under physiological flow. Time-lapse microscopy and single-cell trajectory analysis in the PToC revealed that while the majority of UPEC moved directly through the system, a minority population initiated heterogeneous adhesion, identified as either rolling or bound. Adhesion was predominantly transient and mediated by P pili at the earliest time-points. These bound bacteria initiated a founder population which rapidly divided, leading to 3D microcolonies. Within the first hours, the microcolonies did not express extracellular curli matrix, but rather were dependent on Type 1 fimbriae as the key element in the microcolony structure. Collectively, our results show the application of Organ-on-chip technology to address bacterial adhesion behaviors, demonstrating a well-orchestrated interplay and redundancy between adhesion organelles that enables UPEC to form microcolonies and persist under physiological shear stress.

5.
Biofilm ; 4: 100083, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36117547

RESUMO

Antimicrobial resistance is a medical threat of global dimensions. Proper antimicrobial susceptibility testing (AST) for drug development, patient diagnosis and treatment is crucial to counteract ineffective drug use and resistance development. Despite the important role of bacterial biofilms in chronic and device-associated infections, the efficacy of antibiotics is determined using planktonic cultures. To address the need for antibiotics targeting bacteria in the biofilm lifestyle, we here present an optotracing-based biofilm-AST using Salmonella as model. Our non-disruptive method enables real-time recording of the extracellular matrix (ECM) components, providing specific detection of the biofilm lifestyle. Biofilm formation prior to antibiotic challenge can thus be confirmed and pre-treatment data collected. By introducing Kirby-Bauer discs, we performed a broad screen of the effects of antibiotics representing multiple classes, and identified compounds with ECM inhibitory as well as promoting effects. These compounds were further tested in agar-based dose-response biofilm-AST assays. By quantifying the ECM based on the amount of curli, and by visualizing the biofilm size and morphology, we achieved new information directly reflecting the treated biofilm. This verified the efficacy of several antibiotics that were effective in eradicating pre-formed biofilms, and it uncovered intriguing possible resistance mechanisms initiated in response to treatments. By providing deeper insights into the resistances and susceptibilities of microbes, expanded use of the biofilm-AST will contribute to more effective treatments of infections and reduced resistance development.

6.
Front Cell Infect Microbiol ; 12: 981454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118028

RESUMO

Candida albicans is the most common fungal pathogen in humans, implicated in hospital-acquired infections, secondary infections in human immunodeficiency virus (HIV) patients, and is a significant contributor to the global antimicrobial resistance (AMR) burden. Early detection of this pathogen is needed to guide preventative strategies and the selection and development of therapeutic treatments. Fungal biofilms are a unique heterogeneous mix of cell types, extracellular carbohydrates and amyloid aggregates. Perhaps due to the dominance of carbohydrates in fungi, to date, few specific methods are available for the detection of fungal biofilms. Here we present a new optotracing-based method for the detection and analysis of yeast and biofilms based on C. albicans SC5314 as a model. Using commercial extracts of cell wall carbohydrates, we showed the capability of the optotracer EbbaBiolight 680 for detecting chitin and ß-glucans. The sensitivity of this tracer to these carbohydrates in their native environment within fungal cells enabled the visualization of both yeast and hyphal forms of the microbe. Analysis of optotracer fluorescence by confocal laser scanning microscopy revealed extensive staining of fungi cell walls as well as the presence of intracellular amyloid aggregates within a subpopulation of cells within the biofilm. Further analysis of the photophysical properties of bound tracers by spectroscopy and spectral imaging revealed polymorphisms between amyloid aggregates within yeast and hyphal cells and enabled their differentiation. With exceptional spatial and temporal resolution, this assay adds a new technique that facilitates future understanding of fungal biofilms and their formation, and enables direct, unbiased diagnostics of these medically relevant biofilms, as well as the development of antifungal strategies.


Assuntos
Candida albicans , beta-Glucanas , Antifúngicos , Biofilmes , Carboidratos , Quitina , Humanos , Extratos Vegetais
7.
Biofilm ; 3: 100060, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841245

RESUMO

Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms.

8.
NPJ Biofilms Microbiomes ; 6(1): 35, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037198

RESUMO

Methods for bacterial detection are needed to advance the infection research and diagnostics. Based on conformation-sensitive fluorescent tracer molecules, optotracing was recently established for dynamic detection and visualization of structural amyloids and polysaccharides in the biofilm matrix of gram-negative bacteria. Here, we extend the use of optotracing for detection of gram-positive bacteria, focussing on the clinically relevant opportunistic human pathogen Staphylococcus aureus. We identify a donor-acceptor-donor-type optotracer, whose binding-induced fluorescence enables real-time detection, quantification, and visualization of S. aureus in monoculture and when mixed with gram-negative Salmonella Enteritidis. An algorithm-based automated high-throughput screen of 1920 S. aureus transposon mutants recognized the cell envelope as the binding target, which was corroborated by super-resolution microscopy of bacterial cells and spectroscopic analysis of purified cell wall components. The binding event was essentially governed by hydrophobic interactions, which permitted custom-designed tuning of the binding selectivity towards S. aureus versus Enterococcus faecalis by appropriate selection of buffer conditions. Collectively this work demonstrates optotracing as an enabling technology relevant for any field of basic and applied research, where visualization and detection of S. aureus is needed.


Assuntos
Técnicas Bacteriológicas/métodos , Mutação , Salmonella enteritidis/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação , Tiofenos/química , Algoritmos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/ultraestrutura , Elementos de DNA Transponíveis , Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Microscopia de Fluorescência , Polissacarídeos Bacterianos/metabolismo , Espectrometria de Fluorescência , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
9.
Front Chem ; 7: 265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058140

RESUMO

Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30393563

RESUMO

The ability of uropathogenic Escherichia coli (UPEC) to adopt a biofilm lifestyle in the urinary tract is suggested as one cause of recurrent urinary tract infections (UTIs). A clinical role of UPEC biofilm is further supported by the presence of bacterial aggregates in urine of UTI patients. Yet, no diagnostics exist to differentiate between the planktonic and biofilm lifestyle of bacteria. Here, we developed a rapid diagnostic assay for biofilm-related UTI, based on the detection of cellulose in urine. Cellulose, a component of biofilm extracellular matrix, is detected by a luminescent-conjugated oligothiophene, which emits a conformation-dependent fluorescence spectrum when bound to a target molecule. We first defined the cellulose-specific spectral signature in the extracellular matrix of UPEC biofilm colonies, and used these settings to detect cellulose in urine. To translate this optotracing assay for clinical use, we composed a workflow that enabled rapid isolation of urine sediment and screening for the presence of UPEC-derived cellulose in <45 min. Using multivariate analysis, we analyzed spectral information obtained between 464 and 508 nm by optotracing of urine from 182 UTI patients and 8 healthy volunteers. Cellulose was detected in 14.8% of UTI urine samples. Using cellulose as a biomarker for biofilm-related UTI, our data provide direct evidence that UPEC forms biofilm in the urinary tract. Clinical implementation of this rapid, non-invasive and user-friendly optotracing diagnostic assay will potentially aid clinicians in the design of effective antibiotic treatment.

11.
Sci Rep ; 8(1): 3108, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449697

RESUMO

Efficient use of plant-derived materials requires enabling technologies for non-disruptive composition analysis. The ability to identify and spatially locate polysaccharides in native plant tissues is difficult but essential. Here, we develop an optical method for cellulose identification using the structure-responsive, heptameric oligothiophene h-FTAA as molecular fluorophore. Spectrophotometric analysis of h-FTAA interacting with closely related glucans revealed an exceptional specificity for ß-linked glucans. This optical, non-disruptive method for stereochemical differentiation of glycosidic linkages was next used for in situ composition analysis in plants. Multi-laser/multi-detector analysis developed herein revealed spatial localization of cellulose and structural cell wall features such as plasmodesmata and perforated sieve plates of the phloem. Simultaneous imaging of intrinsically fluorescent components revealed the spatial relationship between cell walls and other organelles, such as chloroplasts and lignified annular thickenings of the trachea, with precision at the sub-cellular scale. Our non-destructive method for cellulose identification lays the foundation for the emergence of anatomical maps of the chemical constituents in plant tissues. This rapid and versatile method will likely benefit the plant science research fields and may serve the biorefinery industry as reporter for feedstock optimization as well as in-line monitoring of cellulose reactions during standard operations.


Assuntos
Celulose/química , Glucanos/química , Parede Celular/química , Celulose/isolamento & purificação , Celulose/metabolismo , Glucanos/metabolismo , Pectinas/química , Floema/química , Plantas/química , Plasmodesmos/química , Polissacarídeos/química , Estereoisomerismo , Tiofenos/análise , Tiofenos/metabolismo , Xilanos/química , beta-Glucanas/química
12.
Sci Rep ; 6: 35578, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759105

RESUMO

Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.


Assuntos
Celulose/análise , Misturas Complexas/química , Lignina/análise , Polissacarídeos/análise , Tiofenos/química , Biomassa , Técnicas Biossensoriais , Estudos de Viabilidade , Medições Luminescentes , Nanofibras
13.
NPJ Biofilms Microbiomes ; 2: 16024, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721253

RESUMO

Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research.

15.
Microbiol Spectr ; 3(5)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26542040

RESUMO

Pyelonephritis represents a subset of urinary tract infections that occur from bacteria ascending from the lower to the upper reaches of the genitourinary system, such as the kidney. The renal system contains a range of hydrodynamically and immunologically challenging, interconnected microenvironments where the invading pathogen may populate during the course of the infection. The situation at the infection foci changes dynamically, vacillating between bacterial colonization and clearance, to which the outcome is a summation of all host-pathogen elements in play. A selection of important determinants includes factors of microbial origin, effects of eukaryotic cell signaling, physiological facets of the infected organ, and signals from distal organs. Improved understanding of the multifactorial aspects of molecular pathogenesis of infection requires intravital, cross-disciplinary approaches with high spatio-temporal resolution. The advancement of such approaches promises to eventually provide a comprehensive understanding of the integrated pathophysiology of pyelonephritis.


Assuntos
Interações Hospedeiro-Patógeno , Pielonefrite/microbiologia , Pielonefrite/fisiopatologia , Infecções Urinárias/complicações , Animais , Modelos Animais de Doenças , Humanos , Sistema Urogenital/microbiologia , Sistema Urogenital/patologia
16.
Methods Mol Biol ; 1197: 87-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25172276

RESUMO

Intravital two-photon microscopy (2PM) is an advanced fluorescence based imaging technique that allows for a cinematic study of physiological events occurring within tissues of the live animal. Based on this real-time imaging platform, the pathophysiology of bacterial infections can be studied in the most relevant of model systems-the live host. Whereas traditional animal models of host-pathogen interaction studies rely on end stage analysis of dissected tissues, noninvasive intravital imaging allows for real-time monitoring of infection during shorter or extended time frames. Here we describe the use of advanced surgical techniques for initiation of spatially and temporally well-controlled kidney infections in rats, and how the bacterial whereabouts can be studied while at the same time monitoring the host's altered tissue homeostasis based on real-time deep tissue imaging on the 2PM platform. Whereas this chapter focuses on pyelonephritis induced by uropathogenic Escherichia coli (UPEC) in rats, the major concepts can easily be translated to numerous infections in a variety of organs.


Assuntos
Infecções Bacterianas/patologia , Diagnóstico por Imagem , Interações Hospedeiro-Patógeno , Escherichia coli Uropatogênica/fisiologia , Animais , Infecções por Escherichia coli/patologia , Microscopia , Ratos
17.
Methods Enzymol ; 506: 35-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22341218

RESUMO

To understand the underlying mechanisms of bacterial infections, researchers have for long addressed the molecular interactions occurring when the bacterium interacts with host target cells. In these studies, primarily based on in vitro systems, molecular details have been revealed along with increased knowledge regarding the general infection process. With the recent advancements in in vivo imaging techniques, we are now in a position to bridge a transition from classical minimalistic in vitro approaches to allow infections to be studied in its native complexity-the live organ. Techniques such as multiphoton microscopy (MPM) allow cellular-level visualization of the dynamic infection process in real time within the living host. Studies in which all interplaying factors, such as the influences of the immune, lymphatic, and vascular systems can be accounted for, are likely to provide new insights to our current understanding of the infection process. MPM imaging becomes extra powerful when combined with advanced surgical procedure, allowing studies of the illusive early hours of infection. In this chapter, our intention is to provide a general view on how to design and carry out intravital imaging of a bacterial infection. While exemplifying this using a spatiotemporally well-controlled uropathogenic Escherichia coli (UPEC) infection in rat kidneys, we hope to provide the reader with general considerations that can be adapted to other bacterial infections in organs other than the kidney.


Assuntos
Bactérias/ultraestrutura , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Bactérias/citologia , Humanos , Imuno-Histoquímica/métodos , Ratos
18.
Future Microbiol ; 7(4): 519-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22439728

RESUMO

In complex environments, such as those found in the human host, pathogenic bacteria constantly battle the unfavorable conditions imposed by the host response to their presence. During Escherichia coli-induced pyelonephritis, a cascade of events are shown in an intravital animal model to occur in a timely and sequential manner, representing the dynamic interplay between host and pathogen. Today, intravital techniques allow for observing infection in the living host. At resolutions almost on the single-cell level, improved detection methods offer a movie-like description of infection dynamics. Tissue microbiology involves monitoring host-pathogen interaction within the dynamic microecology of infectious sites in the live host. This new field holds great promise for insightful research into microbial disease intervention strategies.


Assuntos
Interações Hospedeiro-Patógeno , Pielonefrite/microbiologia , Sistema Urinário/microbiologia , Escherichia coli Uropatogênica/fisiologia , Animais , Humanos , Modelos Biológicos , Pielonefrite/imunologia , Sistema Urinário/imunologia , Escherichia coli Uropatogênica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA