Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36240696

RESUMO

Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence,α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition ofα-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g-1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, theα-graphyne monolayer thus has the potential to be employed as an anode in NIBs.

2.
J Chem Phys ; 141(19): 194705, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416903

RESUMO

We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules.


Assuntos
Simulação de Dinâmica Molecular , Cloreto de Sódio/química , Ligação de Hidrogênio , Soluções , Água/química
3.
J Chem Phys ; 141(13): 134703, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296824

RESUMO

We have performed ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and methanol molecules. Detailed results are obtained for the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and methanol molecules, hydrogen bond distributions and also the orientational profiles of bulk and interfacial molecules. The methanol molecules are found to have a higher propensity to be at the interface than water molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-methanol hydrogen bonds at the interface with the hydrophobic methyl group pointing towards the vapor side. It is also found that for both types of molecules, the dipole moment decreases at the interface. It is also found that the local electric field of water influences the dipole moment of methanol molecules. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational frequency fluctuations in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations. The slower hydrogen bond dynamics for the interfacial molecules with respect to bulk can be attributed to diminished cooperative effects at the interface due to reduced density and number of hydrogen bonds.


Assuntos
Metanol/química , Água/química , Difusão , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Volatilização
4.
RSC Adv ; 10(59): 35988-35997, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35517088

RESUMO

Selective oxidation of alcohols is an attractive organic transformation and has received tremendous attention from the scientific community over the years. Herein, a mesoporous polymer (MP) was synthesized by a template-free solvothermal approach. The surface of the MP was functionalized with quaternary ammonium groups and polyoxotungstate anion (PW11O39 7-) was subsequently supported on the MP as a counter anion to the ammonium cation by a simple ion-exchange procedure. The structure of PW11 and PW4 complexes was confirmed by 31P NMR and FTIR analysis. The surface properties of all the catalysts synthesized were explored by various characterization techniques such as nitrogen sorption, TGA, contact angle measurement, and ICP-OES analysis. The synthesized PW11/MP catalysts were employed for selective oxidation of alcohols. Among the various PW11 supported catalysts, PW11/MP (80 : 20) demonstrated excellent catalytic activity for the oxidation of alcohols using aqueous H2O2. The PW11/MP (80 : 20) catalyst showed good catalytic activity for oxidation of a wide range of alcohols including substituted, heterocyclic and secondary alcohols. The superior catalytic activity of PW11/MP (80 : 20) is attributed to an optimum balance in the hydrophilicity/hydrophobicity in the mesoporous environment, better catalyst wettability, and enrichment of reactants in the catalytic active sites.

5.
RSC Adv ; 8(41): 22998-23018, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540143

RESUMO

Theoretical design and experimental realization of novel nanoporous architectures in carbon membranes has been a success story in recent times. Research on graphynes, an interesting class of materials in carbon flatland, has contributed immensely to this success story. Graphyne frameworks possessing sp and sp2 hybridized carbon atoms offer a variety of uniformly distributed nanoporous architectures for applications ranging from water desalination, gas separation, and energy storage to catalysis. Theory has played a pivotal role in research on graphynes, starting from the prediction of various structural forms to the emergence of their remarkable applications. Herein, we attempt to provide an up-to-date account of research on graphynes, highlighting contributions from numerous theoretical investigations that have led to the current status of graphynes as indispensable materials in carbon flatland. Despite unsolved challenges in large-scale synthesis, the future appears bright for graphynes in present theoretical and experimental research scenarios.

6.
ACS Nano ; 10(9): 8536-44, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27556934

RESUMO

Droplet spreading at an applied voltage underlies the function of tunable optical devices including adjustable lenses and matrix display elements. Faster response and the enhanced resolution motivate research toward miniaturization of these devices to nanoscale dimensions. The response of an aqueous nanodroplet to an applied field can differ significantly from macroscopic predictions. Understanding these differences requires characterization at the molecular level. We describe the equilibrium and nonequilibrium molecular dynamics simulations of nanosized aqueous droplets on a hydrophobic surface with the embedded concentric electrodes. Constant electrode potential is enforced by a rigorous account of the metal polarization. We demonstrate that the reduction of the equilibrium contact angle is commensurate to, and adjusts reversibly with, the voltage change. For a droplet with O(10) nm diameter, a typical response time to the imposition of the field is of O(10(2)) ps. Drop relaxation is about twice as fast when the field is switched off. The friction coefficient obtained from the rate of the drop relaxation on the nonuniform surface, decreases when the droplet approaches equilibrium from either direction, that is, by spreading or receding. The strong dependence of the friction on the surface hydrophilicity points to the dominance of the liquid-surface friction at the drop's perimeter as described in the molecular kinetic theory. This approach enables correct predictions of trends in dynamic responses associated with varied voltage or substrate material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA