Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Aging ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210150

RESUMO

Inhibition of S6 kinase 1 (S6K1) extends lifespan and improves healthspan in mice, but the underlying mechanisms are unclear. Cellular senescence is a stable growth arrest accompanied by an inflammatory senescence-associated secretory phenotype (SASP). Cellular senescence and SASP-mediated chronic inflammation contribute to age-related pathology, but the specific role of S6K1 has not been determined. Here we show that S6K1 deletion does not reduce senescence but ameliorates inflammation in aged mouse livers. Using human and mouse models of senescence, we demonstrate that reduced inflammation is a liver-intrinsic effect associated with S6K deletion. Specifically, we show that S6K1 deletion results in reduced IRF3 activation; impaired production of cytokines, such as IL1ß; and reduced immune infiltration. Using either liver-specific or myeloid-specific S6K knockout mice, we also demonstrate that reduced immune infiltration and clearance of senescent cells is a hepatocyte-intrinsic phenomenon. Overall, deletion of S6K reduces inflammation in the liver, suggesting that suppression of the inflammatory SASP by loss of S6K could underlie the beneficial effects of inhibiting this pathway on healthspan and lifespan.

2.
Learn Mem ; 18(6): 375-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21597043

RESUMO

Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Memória/fisiologia , Análise de Variância , Animais , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Comportamento Exploratório/fisiologia , Medo , Guanilato Quinases/metabolismo , Hipocampo/citologia , Proteínas Substratos do Receptor de Insulina/deficiência , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Teste de Desempenho do Rota-Rod/métodos , Deleção de Sequência/genética
3.
J Clin Invest ; 117(8): 2325-36, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17671657

RESUMO

Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Complexos Multienzimáticos/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Proteína Relacionada com Agouti , Animais , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Leptina/metabolismo , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Pró-Opiomelanocortina/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Transdução de Sinais/fisiologia
4.
J Clin Invest ; 130(1): 126-142, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557134

RESUMO

Arcuate nucleus agouti-related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs, and other behaviors, implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown. Here, we show that nociceptin-expressing neurons in the anterior bed nuclei of the stria terminalis (aBNST) make direct GABAergic inputs onto AgRP neurons. We found that activation of these neurons inhibited AgRP neurons and feeding. The activity of these neurons increased upon food availability, and their ablation resulted in obesity. Furthermore, these neurons received afferent inputs from a range of upstream brain regions as well as hypothalamic nuclei. Therefore, aBNST GABAergic nociceptin neurons may act as a gateway to feeding behavior by connecting AgRP neurons to both homeostatic and nonhomeostatic neuronal inputs.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Núcleo Arqueado do Hipotálamo/fisiologia , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Peptídeos Opioides/fisiologia , Núcleos Septais/fisiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/fisiologia , Nociceptina
5.
Biochem Biophys Res Commun ; 386(1): 257-62, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19523444

RESUMO

As impaired insulin signalling (IIS) is a risk factor for Alzheimer's disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2(-/-)) mice which develop insulin resistance. The resulting Tg2576/Irs2(-/-) animals had increased tau phosphorylation but a paradoxical amelioration of Abeta pathology. An increase of the Abeta binding protein transthyretin suggests that increased clearance of Abeta underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes-a reduction in aggregated Abeta but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Memória , Doença de Alzheimer/metabolismo , Animais , Deleção de Genes , Hipocampo/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/metabolismo
6.
FASEB J ; 22(3): 807-18, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17928362

RESUMO

Recent evidence suggests that alterations in insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1-/- mice are long-lived. Furthermore, they displayed resistance to a range of age-sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1-/- female mice also displayed normal anterior pituitary function, distinguishing them from long-lived somatotrophic axis mutants. In contrast, Irs2-/- mice were short-lived, whereas Irs1+/- and Irs2+/- mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age-related processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Longevidade/genética , Animais , Biomarcadores/análise , Feminino , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Transdução de Sinais/genética
7.
Mol Metab ; 20: 38-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553769

RESUMO

OBJECTIVE: Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS: To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS: These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS: Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Células Precursoras de Monócitos e Macrófagos/metabolismo , Obesidade/genética , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Catecolaminas/metabolismo , Células Cultivadas , Metabolismo Energético , Deleção de Genes , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sistema Nervoso Simpático/fisiologia
8.
J Clin Invest ; 115(4): 940-50, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15841180

RESUMO

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced beta cell mass. Overt diabetes did not ensue, because beta cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced beta cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in beta cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.


Assuntos
Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ilhotas Pancreáticas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Animais , Peso Corporal , Eletrofisiologia , Genótipo , Glucose/metabolismo , Hipotálamo/citologia , Insulina/administração & dosagem , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/citologia , Leptina/administração & dosagem , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Fosfoproteínas/genética , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Cell Rep ; 25(2): 278-287.e4, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304668

RESUMO

Leptin acts on hypothalamic pro-opiomelanocortin (POMC) neurons to regulate glucose homeostasis, but the precise mechanisms remain unclear. Here, we demonstrate that leptin-induced depolarization of POMC neurons is associated with the augmentation of a voltage-gated calcium (CaV) conductance with the properties of the "R-type" channel. Knockdown of the pore-forming subunit of the R-type (CaV2.3 or Cacna1e) conductance in hypothalamic POMC neurons prevented sustained leptin-induced depolarization. In vivo POMC-specific Cacna1e knockdown increased hepatic glucose production and insulin resistance, while body weight, feeding, or leptin-induced suppression of food intake were not changed. These findings link Cacna1e function to leptin-mediated POMC neuron excitability and glucose homeostasis and may provide a target for the treatment of diabetes.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Leptina/farmacologia , Fígado/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Homeostase , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos
10.
Mol Metab ; 18: 97-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30279096

RESUMO

OBJECTIVE: Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin. Neuronatin expression is downregulated in obese children and has been associated with stochastic obesity in C57BL/6 mice. However, our recent studies of Nnat null mice on this genetic background failed to display any body weight or feeding phenotypes but revealed a defect in glucose-stimulated insulin secretion due to the ability of neuronatin to potentiate signal peptidase cleavage of preproinsulin. Nnat deficiency in beta cells therefore caused a lack of appropriate storage and secretion of mature insulin. METHODS: To further explore the potential role of Nnat in the regulation of body weight and adiposity, we studied classical imprinting-related phenotypes such as placental, fetal, and postnatal growth trajectory patterns that may impact upon subsequent adult metabolic phenotypes. RESULTS: Here we find that, in contrast to the lack of any body weight or feeding phenotypes on the C57BL/6J background, deletion of Nnat in mice on 129S2/Sv background causes a postnatal growth restriction with reduced adipose tissue accumulation, followed by catch up growth after weaning. This was in the absence of any effect on fetal growth or placental development. In adult 129S2/Sv mice, Nnat deletion was associated with hyperphagia, reduced energy expenditure, and partial leptin resistance. Lack of neuronatin also potentiated obesity caused by either aging or high fat diet feeding. CONCLUSIONS: The imprinted gene Nnat plays a key role in postnatal growth, adult energy homeostasis, and the pathogenesis of obesity via catch up growth effects, but this role is dependent upon genetic background.


Assuntos
Transtornos do Crescimento/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Adiposidade/genética , Animais , Peso Corporal/genética , Metabolismo Energético , Deleção de Genes , Impressão Genômica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo
11.
J Clin Invest ; 128(8): 3369-3381, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29864031

RESUMO

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in ß cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in ß cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of ß cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.


Assuntos
Regulação da Expressão Gênica , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Glucose/genética , Glucose/metabolismo , Insulina/genética , Células Secretoras de Insulina/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
12.
Cell Rep ; 21(12): 3559-3572, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262334

RESUMO

Feeding requires the integration of homeostatic drives with emotional states relevant to food procurement in potentially hostile environments. The ventromedial hypothalamus (VMH) regulates feeding and anxiety, but how these are controlled in a concerted manner remains unclear. Using pharmacogenetic, optogenetic, and calcium imaging approaches with a battery of behavioral assays, we demonstrate that VMH steroidogenic factor 1 (SF1) neurons constitute a nutritionally sensitive switch, modulating the competing motivations of feeding and avoidance of potentially dangerous environments. Acute alteration of SF1 neuronal activity alters food intake via changes in appetite and feeding-related behaviors, including locomotion, exploration, anxiety, and valence. In turn, intrinsic SF1 neuron activity is low during feeding and increases with both feeding termination and stress. Our findings identify SF1 neurons as a key part of the neurocircuitry that controls both feeding and related affective states, giving potential insights into the relationship between disordered eating and stress-associated psychological disorders in humans.


Assuntos
Ansiedade/fisiopatologia , Emoções , Comportamento Alimentar , Hipotálamo/fisiologia , Neurônios/fisiologia , Animais , Ansiedade/metabolismo , Apetite , Cálcio/metabolismo , Comportamento Exploratório , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Locomoção , Masculino , Camundongos , Neurônios/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
13.
Cell Rep ; 11(3): 335-43, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25865886

RESUMO

Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons.


Assuntos
Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia
14.
Mol Metab ; 2(3): 142-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24049729

RESUMO

The effect of peptide tyrosine-tyrosine (PYY) on feeding is well established but currently its role in glucose homeostasis is poorly defined. Here we show in mice, that intraperitoneal (ip) injection of PYY3-36 or Y2R agonist improves nutrient-stimulated glucose tolerance and enhances insulin secretion; an effect blocked by peripheral, but not central, Y2R antagonist administration. Studies on isolated mouse islets revealed no direct effect of PYY3-36 on insulin secretion. Bariatric surgery in mice, enterogastric anastomosis (EGA), improved glucose tolerance in wild-type mice and increased circulating PYY and active GLP-1. In contrast, in Pyy-null mice, post-operative glucose tolerance and active GLP-1 levels were similar in EGA and sham-operated groups. PYY3-36 ip increased hepato-portal active GLP-1 plasma levels, an effect blocked by ip Y2R antagonist. Collectively, these data suggest that PYY3-36 therefore acting via peripheral Y2R increases hepato-portal active GLP-1 plasma levels and improves nutrient-stimulated glucose tolerance.

15.
PLoS One ; 8(3): e59407, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527188

RESUMO

BACKGROUND: Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -ß isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. METHODS: Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. RESULTS: Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-ß expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R(2) = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R(2) = 0.06, P = 0.34). Hypothalamic expression of Nnat-ß correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. CONCLUSIONS: Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss.


Assuntos
Derivação Gástrica , Regulação da Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Splicing de RNA/fisiologia , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Restrição Calórica , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Clin Invest ; 123(8): 3539-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23867619

RESUMO

Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans.


Assuntos
Apetite , Grelina/sangue , Proteínas/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Adolescente , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Encéfalo/fisiologia , Ingestão de Alimentos/psicologia , Alimentos , Neuroimagem Funcional , Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Metilação , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recompensa , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Adulto Jovem
17.
PLoS One ; 7(2): e31124, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383997

RESUMO

OBJECTIVE: Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2). RESEARCH DESIGN AND METHODS: To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO). RESULTS: We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3ß. CONCLUSIONS: These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.


Assuntos
Encéfalo/metabolismo , Proteínas Substratos do Receptor de Insulina/biossíntese , Proteínas Substratos do Receptor de Insulina/genética , Plasticidade Neuronal , Animais , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Eletrofisiologia/métodos , Feminino , Heterozigoto , Hipocampo/metabolismo , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Projetos de Pesquisa , Sinapses/metabolismo
18.
Diabetes ; 60(3): 810-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21292870

RESUMO

OBJECTIVE: Bariatric surgery causes durable weight loss. Gut hormones are implicated in obesity pathogenesis, dietary failure, and mediating gastrointestinal bypass (GIBP) surgery weight loss. In mice, we determined the effects of diet-induced obesity (DIO), subsequent dieting, and GIBP surgery on ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). To evaluate PYY's role in mediating weight loss post-GIBP, we undertook GIBP surgery in PyyKO mice. RESEARCH DESIGN AND METHODS: Male C57BL/6 mice randomized to a high-fat diet or control diet were killed at 4-week intervals. DIO mice underwent switch to ad libitum low-fat diet (DIO-switch) or caloric restriction (CR) for 4 weeks before being killed. PyyKO mice and their DIO wild-type (WT) littermates underwent GIBP or sham surgery and were culled 10 days postoperatively. Fasting acyl-ghrelin, total PYY, active GLP-1 concentrations, stomach ghrelin expression, and colonic Pyy and glucagon expression were determined. Fasting and postprandial PYY and GLP-1 concentrations were assessed 30 days postsurgery in GIBP and sham pair-fed (sham.PF) groups. RESULTS: DIO progressively reduced circulating fasting acyl-ghrelin, PYY, and GLP-1 levels. CR and DIO-switch caused weight loss but failed to restore circulating PYY to weight-appropriate levels. After GIBP, WT mice lost weight and exhibited increased circulating fasting PYY and colonic Pyy and glucagon expression. In contrast, the acute effects of GIBP on body weight were lost in PyyKO mice. Fasting PYY and postprandial PYY and GLP-1 levels were increased in GIBP mice compared with sham.PF mice. CONCLUSIONS: PYY plays a key role in mediating the early weight loss observed post-GIBP, whereas relative PYY deficiency during dieting may compromise weight-loss attempts.


Assuntos
Dieta Redutora , Grelina/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Peptídeo YY/metabolismo , Redução de Peso/fisiologia , Análise de Variância , Animais , Colo/metabolismo , Dieta com Restrição de Gorduras , Ensaio de Imunoadsorção Enzimática , Derivação Gástrica , Mucosa Gástrica/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Leptina/sangue , Masculino , Camundongos , Radioimunoensaio , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Metab ; 10(5): 343-54, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19883613

RESUMO

PI3K signaling is thought to mediate leptin and insulin action in hypothalamic pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, through largely unknown mechanisms. We inactivated either p110alpha or p110beta PI3K catalytic subunits in these neurons and demonstrate a dominant role for the latter in energy homeostasis regulation. In POMC neurons, p110beta inactivation prevented insulin- and leptin-stimulated electrophysiological responses. POMCp110beta null mice exhibited central leptin resistance, increased adiposity, and diet-induced obesity. In contrast, the response to leptin was not blocked in p110alpha-deficient POMC neurons. Accordingly, POMCp110alpha null mice displayed minimal energy homeostasis abnormalities. Similarly, in AgRP neurons, p110beta had a more important role than p110alpha. AgRPp110alpha null mice displayed normal energy homeostasis regulation, whereas AgRPp110beta null mice were lean, with increased leptin sensitivity and resistance to diet-induced obesity. These results demonstrate distinct metabolic roles for the p110alpha and p110beta isoforms of PI3K in hypothalamic energy regulation.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Metabolismo Energético/fisiologia , Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pró-Opiomelanocortina/metabolismo , Adiposidade/genética , Animais , Classe I de Fosfatidilinositol 3-Quinases , Dieta , Fenômenos Eletrofisiológicos , Hipotálamo/metabolismo , Insulina/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Leptina/metabolismo , Camundongos , Camundongos Knockout , Células Neuroendócrinas/enzimologia , Obesidade/genética , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais
20.
Science ; 326(5949): 140-4, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19797661

RESUMO

Caloric restriction (CR) protects against aging and disease, but the mechanisms by which this affects mammalian life span are unclear. We show in mice that deletion of ribosomal S6 protein kinase 1 (S6K1), a component of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway, led to increased life span and resistance to age-related pathologies, such as bone, immune, and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian life-span and suggest that therapeutic manipulation of S6K1 and AMPK might mimic CR and could provide broad protection against diseases of aging.


Assuntos
Envelhecimento/fisiologia , Longevidade/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Densidade Óssea , Restrição Calórica , Feminino , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subpopulações de Linfócitos T/imunologia , Serina-Treonina Quinases TOR , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA