RESUMO
T cell dysfunction is well documented during chronic viral infections but little is known about functional abnormalities in humoral immunity. Here we report that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) exhibit a severe defect in Fcγ-receptor (FcγR)-mediated antibody effector functions. Using transgenic mice expressing human CD20, we found that chronic LCMV infection impaired the depletion of B cells with rituximab, an anti-CD20 antibody widely used for the treatment of B cell lymphomas. In addition, FcγR-dependent activation of dendritic cells by agonistic anti-CD40 antibody was compromised in chronically infected mice. These defects were due to viral antigen-antibody complexes and not the chronic infection per se, because FcγR-mediated effector functions were normal in persistently infected mice that lacked LCMV-specific antibodies. Our findings have implications for the therapeutic use of antibodies and suggest that high levels of pre-existing immune complexes could limit the effectiveness of antibody therapy in humans.
Assuntos
Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Depleção Linfocítica , Coriomeningite Linfocítica/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/biossíntese , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Hipergamaglobulinemia/imunologia , Fatores Imunológicos/farmacologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RituximabRESUMO
The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.
Assuntos
Glicoproteínas/genética , Glicosiltransferases/genética , Transporte Proteico/genética , Streptococcus gordonii/genética , Acetilação , Sequência de Aminoácidos/genética , Glicoproteínas/química , Glicosilação , Glicosiltransferases/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Serina/química , Serina/genética , Streptococcus gordonii/químicaRESUMO
BACKGROUND: Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that is recognized as a major cause of chronic gastritis, peptic ulcers, and gastric cancer. Comparable to other Gram-negative bacteria, lipopolysaccharides (LPS) are an important cellular component of the outer membrane of H. pylori. The LPS of this organism plays a key role in its colonization and persistence in the stomach. In addition, H. pylori LPS modulates pathogen-induced host inflammatory responses resulting in chronic inflammation within the gastrointestinal tract. Very little is known about the comparative LPS compositions of different strains of H. pylori with varied degree of virulence in human. Therefore, LPS was analyzed from two strains of H. pylori with differing potency in inducing inflammatory responses (SS1 and G27). LPS were extracted from aqueous and phenol layer of hot-phenol water extraction method and subjected for composition analysis by gas chromatography - mass spectrometry (GC-MS) to sugar and fatty acid compositions. RESULTS: The major difference between the two strains of H. pylori is the presence of Rhamnose, Fucose and GalNAc in the SS1 strain, which was either not found or with low abundance in the G27 strain. On the other hand, high amount of Mannose was present in G27 in comparison to SS1. Fatty acid composition of lipid-A portion also showed considerable amount of differences between the two strains, phenol layer of SS1 had enhanced amount of 3 hydroxy decanoic acid (3-OH-C10:0) and 3-hydroxy dodecanoic acid (3-OH-C12:0) which were not present in G27, whereas myristic acid (C14:0) was present in G27 in relatively high amount. CONCLUSION: The composition analysis of H. pylori LPS, revealed differences in sugars and fatty acids composition between a mouse adapted strain SS1 and G27. This knowledge provides a novel way to dissect out their importance in host-pathogen interaction in further studies.
Assuntos
Helicobacter pylori/química , Lipopolissacarídeos/química , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Helicobacter pylori/metabolismo , Monossacarídeos/química , Especificidade da EspécieRESUMO
Most eukaryotic cells elaborate several proteoglycans critical for transmitting biochemical signals into and between cells. However, the regulation of proteoglycan biosynthesis is not completely understood. We show that the atypical secretory kinase family with sequence similarity 20, member B (Fam20B) phosphorylates the initiating xylose residue in the proteoglycan tetrasaccharide linkage region, and that this event functions as a molecular switch to regulate subsequent glycosaminoglycan assembly. Proteoglycans from FAM20B knockout cells contain a truncated tetrasaccharide linkage region consisting of a disaccharide capped with sialic acid (Siaα2-3Galß1-4Xylß1) that cannot be further elongated. We also show that the activity of galactosyl transferase II (GalT-II, B3GalT6), a key enzyme in the biosynthesis of the tetrasaccharide linkage region, is dramatically increased by Fam20B-dependent xylose phosphorylation. Inactivating mutations in the GALT-II gene (B3GALT6) associated with Ehlers-Danlos syndrome cause proteoglycan maturation defects similar to FAM20B deletion. Collectively, our findings suggest that GalT-II function is impaired by loss of Fam20B-dependent xylose phosphorylation and reveal a previously unappreciated mechanism for regulation of proteoglycan biosynthesis.
Assuntos
Galactosiltransferases/metabolismo , Proteoglicanas/biossíntese , Ácidos Siálicos/metabolismo , Xilose/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Galactosiltransferases/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fosforilação/genética , Proteoglicanas/genética , Ácidos Siálicos/genética , Xilose/genéticaRESUMO
Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20-50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)-/- transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract.
Assuntos
Ácido N-Acetilneuramínico/metabolismo , Maturação do Esperma , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Útero/imunologiaRESUMO
A novel sugar, 5,7-diacetamido-8-amino-3,5,7,8,9-pentadeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), has been identified as a component of the oligosaccharide (OS) isolated from the lipooligosaccharide (LOS) of the emerging strain of Vibrio parahaemolyticus O3:K6 associated with a global pandemic. In the present study we report the identification and characterization of this novel sugar present in the OS of V. parahaemolyticus O3:K6, using chemical analysis, NMR spectroscopy and mass spectrometry.
Assuntos
Lipopolissacarídeos/química , Açúcares Ácidos/isolamento & purificação , Vibrio parahaemolyticus/química , Sequência de Carboidratos , Glicosídeos/química , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Fosforilação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Açúcares Ácidos/químicaRESUMO
Lipopolysaccharide (LPS), a cell-associated glycolipid that makes up the outer leaflet of the outer membrane of Gram-negative bacteria, is a canonical mediator of microbe-host interactions. The most prevalent Gram-negative gut bacterial taxon, Bacteroides, makes up around 50% of the cells in a typical Western gut; these cells harbor ~300 mg of LPS, making it one of the highest-abundance molecules in the intestine. As a starting point for understanding the biological function of Bacteroides LPS, we have identified genes in Bacteroides thetaiotaomicron VPI 5482 involved in the biosynthesis of its lipid A core and glycan, generated mutants that elaborate altered forms of LPS, and used matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry to interrogate the molecular features of these variants. We demonstrate, inter alia, that the glycan does not appear to have a repeating unit, and so this strain produces lipooligosaccharide (LOS) rather than LPS. This result contrasts with Bacteroides vulgatus ATCC 8482, which by SDS-PAGE analysis appears to produce LPS with a repeating unit. Additionally, our identification of the B. thetaiotaomicron LOS oligosaccharide gene cluster allowed us to identify similar clusters in other Bacteroides species. Our work lays the foundation for developing a structure-function relationship for Bacteroides LPS/LOS in the context of host colonization.IMPORTANCE Much is known about the bacterial species and genes that make up the human microbiome, but remarkably little is known about the molecular mechanisms through which the microbiota influences host biology. A well-known mechanism by which bacteria influence the host centers around lipopolysaccharide (LPS), a component of the Gram-negative bacterial outer membrane. Pathogen-derived LPS is a potent ligand for host receptor Toll-like receptor 4, which plays an important role in sensing bacteria as part of the innate immune response. Puzzlingly, the most common genus of human gut bacteria, Bacteroides, produces LPS but does not elicit a potent proinflammatory response. Previous work showing that Bacteroides LPS differs structurally from pathogen-derived LPS suggested the outlines of an explanation. Here, we take the next step, elucidating the biosynthetic pathway for Bacteroides LPS and generating mutants in the process that will be of great use in understanding how this molecule modulates the host immune response.
Assuntos
Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Vias Biossintéticas/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Persistent viral infections can interfere with FcγR-mediated antibody effector functions by excessive immune complex (IC) formation, resulting in resistance to therapeutic FcγR-dependent antibodies. We and others have previously demonstrated that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) are resistant to a wide range of depleting antibodies due to excessive IC formation. Here, we dissect the mechanisms by which two depleting antibodies overcome the obstacle of endogenous ICs and achieve efficient target cell depletion in persistently infected mice. Efficient antibody-mediated depletion during persistent LCMV infection required increased levels of antibody bound to target cells or use of afucosylated antibodies with increased affinity for FcγRs. Antibodies targeting the highly expressed CD90 antigen or overexpressed human CD20 efficiently depleted their target cells in naïve and persistently infected mice, whereas antibodies directed against less abundant antigens failed to deplete their target cells during persistent LCMV infection. In addition, we demonstrate the superior activity of afucosylated antibodies in the presence of endogenous ICs. We generated afucosylated antibodies directed against CD4 and CD8α, which, in contrast to their parental fucosylated versions, efficiently depleted their respective target cells in persistently infected mice. Efficient antibody-mediated depletion can thus be achieved if therapeutic antibodies can outcompete endogenous ICs for access to FcγRs either by targeting highly expressed antigens or by increased affinity for FcγRs. Our findings have implications for the optimization of therapeutic antibodies and provide strategies to allow efficient FcγR engagement in the presence of competing endogenous ICs in persistent viral infections, autoimmune diseases, and cancer.
Assuntos
Anticorpos Antivirais/imunologia , Coriomeningite Linfocítica/imunologia , Receptores de IgG/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/genéticaRESUMO
Lipooligosaccharide (LOS), a major component of the outer membrane of Moraxella catarrhalis, consists of two major moieties: a lipid A and a core oligosaccharide (OS). The core OS can be dissected into a linker and three OS chains. To gain an insight into the biological activities of the LOS molecules of M. catarrhalis, we used a random transposon mutagenesis approach with an LOS specific monoclonal antibody to construct a serotype A O35Elgt3 LOS mutant. MALDI-TOF-MS of de-O-acylated LOS from the mutant and glycosyl composition, linkage, and NMR analysis of its OS indicated that the LOS contained a truncated core OS and consisted of a Glc-Kdo(2) (linker)-lipid A structure. Phenotypic analysis revealed that the mutant was similar to the wild-type strain in its growth rate, toxicity and susceptibility to hydrophobic reagents. However, the mutant was sensitive to bactericidal activity of normal human serum and had a reduced adherence to human epithelial cells. These data, combined with our previous data obtained from mutants which contained only lipid A or lacked LOS, suggest that the complete OS chain moiety of the LOS is important for serum resistance and adherence to epithelial cells, whereas the linker moiety is critical for maintenance of the outer membrane integrity and stability to preserve normal cell growth. Both the lipid A and linker moieties contribute to the LOS toxicity.
Assuntos
Adesão Celular/fisiologia , Lipídeo A/química , Lipopolissacarídeos/química , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae/metabolismo , Nasofaringe/microbiologia , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/farmacologia , Aderência Bacteriana/imunologia , Estruturas da Membrana Celular/metabolismo , Feminino , Células HeLa , Humanos , Lipídeo A/imunologia , Lipídeo A/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Moraxella catarrhalis/crescimento & desenvolvimento , Infecções por Moraxellaceae/imunologia , Infecções por Moraxellaceae/patologia , Mutagênese , Líquido da Lavagem Nasal/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39-/- mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R-/- mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair.
Assuntos
Decorina/genética , Regulação da Expressão Gênica , Proteínas Nucleares/farmacologia , RNA/genética , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Proteínas de Transporte Vesicular/farmacologia , Cicatrização/fisiologia , Ferimentos e Lesões/genética , Animais , Diferenciação Celular , Células Cultivadas , Decorina/biossíntese , Modelos Animais de Doenças , Feminino , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Hormônio Paratireóideo/biossíntese , Transdução de Sinais , Pele/lesões , Pele/metabolismo , Pele/patologia , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologiaRESUMO
OBJECTIVES: Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of ß-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient's own endogenous IgG. METHODS: We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. RESULTS: There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). CONCLUSIONS: Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.
Assuntos
Imunoglobulinas Intravenosas/uso terapêutico , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Ácido N-Acetilneuramínico/metabolismo , Linfócitos B/enzimologia , Estudos de Casos e Controles , Linhagem Celular , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Fucose/metabolismo , Galactose/metabolismo , Glicosilação , Humanos , Imunoglobulinas Intravenosas/química , Masculino , Síndrome de Linfonodos Mucocutâneos/enzimologia , Ácido N-Acetilneuramínico/química , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sialiltransferases/sangue , Sialiltransferases/genética , Solubilidade , Resultado do Tratamento , beta-D-Galactosídeo alfa 2-6-SialiltransferaseRESUMO
Capsule expression in Neisseria meningitidis is encoded by the cps locus comprised of genes required for biosynthesis and surface translocation. Located adjacent to the gene encoding the polysialyltransferase in serogroups expressing sialic acid-containing capsule, NMB0065 is likely a member of the cps locus, but it is not found in serogroups A or X that express non-sialic acid capsules. To further understand its role in CPS expression, NMB0065 mutants were created in the serogroups B, C and Y strains. The mutants were as sensitive as unencapsulated strains to killing by normal human serum, despite producing near wild-type levels of CPS. Absence of surface expression of capsule was suggested by increased surface hydrophobicity and confirmed by immunogold electron microscopy, which revealed the presence of large vacuoles containing CPS within the cell. GC-MS and NMR analyses of purified capsule from the mutant revealed no apparent changes in polymer structures and lipid anchors. Mutants of NMB0065 homologues in other sialic acid CPS expressing meningococcal serogroups had similar phenotypes. Thus, NMB0065 (CtrG) is not involved in biosynthesis or lipidation of sialic acid-containing capsule but encodes a protein required for proper coupling of the assembly complex to the membrane transport complex allowing surface expression of CPS.
Assuntos
Cápsulas Bacterianas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Algoritmos , Sequência de Aminoácidos , Atividade Bactericida do Sangue , Clonagem Molecular , Genoma Bacteriano , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Neisseria meningitidis/ultraestrutura , Alinhamento de SequênciaRESUMO
Here we report on the presence of sulfated lipopolysaccharide molecules in Azospirillum brasilense, a plant growth-promoting rhizosphere bacterium. Chemical analysis provided structural data on the O-antigen composition and demonstrated the possible involvement of the nodPQ genes in O-antigen sulfation.
Assuntos
Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Complexos Multienzimáticos/metabolismo , Antígenos O/metabolismo , Sulfato Adenililtransferase/metabolismo , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Fracionamento Químico , Eletroforese em Gel de Poliacrilamida , Lipopolissacarídeos/isolamento & purificação , Complexos Multienzimáticos/genética , Sulfato Adenililtransferase/genéticaRESUMO
Lipooligosaccharide (LOS) is a major surface component of Moraxella catarrhalis and a possible virulence factor in the pathogenesis of human infections caused by this organism. The presence of LOS on the bacterium is an obstacle to the development of vaccines derived from whole cells or outer membrane components of the bacterium. An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for the first step of lipid A biosynthesis was identified by the construction and characterization of an isogenic M. catarrhalis lpxA mutant in strain O35E. The resulting mutant was viable despite the complete loss of LOS. The mutant strain showed significantly decreased toxicity by the Limulus amebocyte lysate assay, reduced resistance to normal human serum, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. Importantly, the mutant elicited high levels of antibodies with bactericidal activity and provided protection against a challenge with the wild-type strain. These data suggest that the null LOS mutant is attenuated and may be a potential vaccine candidate against M. catarrhalis.
Assuntos
Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Lipopolissacarídeos/metabolismo , Moraxella catarrhalis/genética , Moraxella catarrhalis/imunologia , Infecções por Moraxellaceae/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Genes Bacterianos/genética , Imunoglobulina G/sangue , Lipopolissacarídeos/biossíntese , Camundongos , Dados de Sequência Molecular , Moraxella catarrhalis/enzimologia , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae/prevenção & controle , Mutação/genética , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Fatores de Virulência/biossíntese , Fatores de Virulência/metabolismoRESUMO
Lipooligosaccharide (LOS), a major outer membrane component of Moraxella catarrhalis, is a possible virulence factor in the pathogenesis of human infections caused by the organism. However, information about the roles of the oligosaccharide chain from LOS in bacterial infection remains limited. Here, a kdtA gene encoding 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase, which is responsible for adding Kdo residues to the lipid A portion of the LOS, was identified by transposon mutagenesis and construction of an isogenic kdtA mutant in strain O35E. The resulting O35EkdtA mutant produced only lipid A without any core oligosaccharide, and it was viable. Physicochemical and biological analysis revealed that the mutant was susceptible to hydrophobic reagents and a hydrophilic glycopeptide and was sensitive to bactericidal activity of normal human serum. Importantly, the mutant showed decreased toxicity by the Limulus amebocyte lysate assay, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. These data suggest that the oligosaccharide moiety of the LOS is important for the biological activity of the LOS and the virulence capability of the bacteria in vitro and in vivo. This study may bring new insights into novel vaccines or therapeutic interventions against M. catarrhalis infections.