Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1417, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446882

RESUMO

Dry reforming of methane (DRM) is a well-known process in which CH4 and CO2 catalytically react to produce syngas. Solid carbon is a well-known byproduct of the DRM but is undesirable as it leads to catalyst deactivation. However, converting CO2 and CH4 into solid carbon serves as a promising carbon capture and sequestration technique that has been demonstrated in this study by two patented processes. In the first process, known as CARGEN technology (CARbon GENerator), a novel concept of two reactors in series is developed that separately convert the greenhouse gases (GHGs) into multi-walled carbon nanotubes (MWCNTs) and syngas. CARGEN enables at least a 50% reduction in energy requirement with at least 65% CO2 conversion compared to the DRM process. The second process presents an alternative pathway for the regeneration/reactivation of the spent DRM/CARGEN catalyst using CO2. Provided herein is the first report on an experimental demonstration of a 'switching' technology in which CO2 is utilized in both the operation and the regeneration cycles and thus, finally contributing to the overall goal of CO2 fixation. The following studies support all the results in this work: physisorption, chemisorption, XRD, XPS, SEM, TEM, TGA, ICP, and Raman analysis.

2.
Ultrason Sonochem ; 21(1): 169-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23742888

RESUMO

The beneficial effect of ultrasound on transesterification reaction is well known. Heterogeneous (or solid) catalysts for biodiesel synthesis have merit that they do not contaminate the byproduct of glycerol. In this paper, we have attempted to identify the mechanistic features of ultrasound-enhanced biodiesel synthesis with the base-catalyst of CaO. A statistical design of experiments (Box-Behnken) was used to identify the influence of temperature, alcohol to oil molar ratio and catalyst loading on transesterification yield. The optimum values of these parameters for the highest yield were identified through Response Surface Method (with a quadratic model) and ANOVA. These values are: temperature=62 °C, molar ratio=10:1 and catalyst loading=6 wt.%. The activation energy was determined as 82.3 kJ/mol, which is higher than that for homogeneous catalyzed system (for both acidic and basic catalyst). The experimental results have been analyzed vis-à-vis simulations of cavitation bubble dynamics. Due to 3-phase heterogeneity of the system, the yield was dominated by intrinsic kinetics, and the optimum temperature for the highest yield was close to boiling point of methanol. At this temperature, the influence of cavitation bubbles (in terms of both sonochemical and sonophysical effect) is negligible, and ultrasonic micro-streaming provided necessary convection in the system. The influence of all parameters on the reaction system was found to be strongly inter-dependent.


Assuntos
Biocombustíveis , Compostos de Cálcio/química , Óxidos/química , Ultrassom , Catálise , Técnicas de Química Sintética , Esterificação , Cinética
3.
Ultrason Sonochem ; 21(3): 1050-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24284543

RESUMO

This paper reports studies in ultrasound-assisted heterogeneous solid catalyzed (CaO) synthesis of biodiesel from crude Jatropha curcas oil. The synthesis has been carried out in two stages, viz. esterification and trans-esterification. The esterification process is not influenced by ultrasound. The transesterification process, however, shows marked enhancement with ultrasound. A statistical experimental design has been used to optimize the process conditions for the synthesis. XRD analysis confirms formation of Ca(OMe)2, which is the active catalyst for transesterification reaction. The optimum values of parameters for the highest yield of transesterification have been determined as follows: alcohol to oil molar ratio ≈ 11, catalyst concentration ≈ 5.5 wt.%, and temperature ≈ 64°C. The activation energy of the reaction is calculated as 133.5 kJ/mol. The heterogeneity of the system increases mass transfer constraints resulting in approx. 4 × increase in activation energy as compared to homogeneous alkali catalyzed system. It is also revealed that intense micro-convection induced by ultrasound enhances the mass transfer characteristics of the system with ∼ 20% reduction in activation energy, as compared to mechanically agitated systems. Influence of catalyst concentration and alcohol to oil molar ratio on the transesterification yield is inter-linked through formation of methoxy ions and their diffusion to the oil-alcohol interface, which in turn is determined by the volume fractions of the two phases in the reaction mixture. As a result, the highest transesterification yield is obtained at the moderate values of catalyst concentration and alcohol to oil molar ratio.


Assuntos
Biocombustíveis , Jatropha/química , Óleos de Plantas/química , Ultrassom , Compostos de Cálcio/química , Catálise , Óxidos/química
4.
Ultrason Sonochem ; 20(1): 294-302, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22805260

RESUMO

In this investigation, an attempt has been made to establish the physical mechanism of sonochemical synthesis of zinc ferrite with concurrent analysis of experimental results and simulations of cavitation bubble dynamics. Experiments have been conducted with mechanical stirring as well as under ultrasound irradiation with variation of pH and the static pressure of the reaction medium. Results of this study reveal that physical effects produced by transient cavitation bubbles play a crucial role in the chemical synthesis. Generation of high amplitude shock waves by transient cavitation bubbles manifest their effect through in situ micro-calcination of metal oxide particles (which are generated through thermal hydrolysis of metal acetates) due to energetic collisions between them. Micro-calcination of oxide particles can also occur in the thin liquid shell surrounding bubble interface, which gets heated up during transient collapse of bubbles. The sonochemical effect of production of OH radicals and H(2)O(2), in itself, is not able to yield ferrite. Moreover, as the in situ micro-calcination involves very small number of particles or even individual particles (as in intra-particle collisions), the agglomeration between resulting ferrite particles is negligible (as compared to external calcination in convention route), leading to ferrite particles of smaller size (6 nm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA