Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Biophys Res Commun ; 456(1): 66-73, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446099

RESUMO

Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.


Assuntos
Proteínas de Transporte/genética , Mutação , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Éxons , Deleção de Genes , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Microscopia Confocal , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína
2.
J Infect Public Health ; 16(12): 2046-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944366

RESUMO

BACKGROUND: The pandemic of COVID-19 has created an unprecedented burden on the healthcare system and medical communities resulting in new public health challenges. On the other hand, in tropical countries, another concern arises due to the similar spectrum of clinical manifestations between COVID-19 and dengue fever. Thus, the neglected tropical disease 'Dengue' writhed with more inattention. This study aims to find the effect of the COVID-19 pandemic on dengue infections in endemic areas of West Bengal, India, and their combined impact on public health. The alterations in circulating dengue serotype and their genomic diversity in different COVID-19 waves were also monitored. METHODS: A total of 1782 patients were included in this study. Dengue NS1 ELISA, molecular serotyping, genotyping and their phylogenetic analysis were performed. GISaided analysis of various dengue serotypes and hotspot identification for risk maps of severe dengue in endemic zones were done. The burden of dengue fever and the sustainability of their viral strains with changing meteorological parameters in parallel to COVID-19 waves were analyzed. RESULTS: Co-circulation of all the four dengue serotypes with rapid change in the pattern of prevalent serotype DENV4 (Genotype-I) in the year 2020 and DENV3 (Genotype-III) in 2021 were observed, in parallel to different circulating strains of COVID-19. Spatiotemporal distribution of DENV using Geographic Information System (GIS) applications observed a serotypic shift and hotspot mapping for risk analysis detected Kolkata as a dengue hotspot, which has also reported the maximum number of COVID-19 cases. CONCLUSION: This study indicates the increased fitness of circulating dengue virus strains with optimal virulence as per changing environmental conditions and the inhabitant's immunity. The high infectivity rate of both the RNA viruses and considering.the consequences of severe dengue and COVID-19 in the population of the same geographical settings is an alarming risk.


Assuntos
COVID-19 , Vírus da Dengue , Dengue , Dengue Grave , Humanos , Sorogrupo , Dengue Grave/epidemiologia , Dengue/epidemiologia , Pandemias , Filogenia , Genótipo , Atenção à Saúde , COVID-19/epidemiologia
3.
J Mol Biol ; 432(17): 4922-4941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687853

RESUMO

Cholesterol homeostasis results from a delicate interplay between influx and efflux of free cholesterol primarily mediated by ABCA1. Here we report downregulation of ABCA1 in hyper-cholesterol conditions in macrophages, which might be responsible for compromised reverse cholesterol transport and hyperlipidemia. Surprisingly, this is countered by the upregulation of a lesser known family member ABCA5 to maintain cholesterol efflux. The relative contribution of ABCA1 and ABCA5 toward cholesterol efflux was evaluated and revealed ABCA5 as the primary efflux mediator under high cholesterol load. These observations were correlated to cholesterol load in circulation in vivo, and we observed an inverse expression profile in mice models of atherosclerosis (ApoE-/-) and hyperlipidemia (PPARα-/-) in response to high cholesterol diet. Observations were further validated in human plasma samples. Simulation studies revealed a unique conformation of ABCA5 proposing a favored route for cholesterol loading onto high-density lipoproteins for reverse cholesterol transport. Thus, our study implicates a functional complementation between these two transporters, formulating an efficient strategy to maintain efflux in cholesterol excess conditions in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/sangue , Dislipidemias/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Células RAW 264.7 , Células THP-1
4.
J Proteomics ; 222: 103796, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32376501

RESUMO

Reverse cholesterol transport (RCT) plays a critical role in removing cholesterol from the arterial wall. However, very few reports directly relate chronic inflammation and RCT with atherosclerosis. The present study was undertaken to investigate clinical implications of significantly altered circulating proteins in subjects with ST-segment elevation myocardial infarction (STEMI) in the manifestation of atherosclerotic events. Using a case-control design, more than 2500 proteins in both STEMI and healthy control subjects were identified by Orbitrap mass spectrometer. Quantitative proteomics study revealed downregulation of 26 proteins while expression of 38 proteins increased significantly in STEMI subjects compared to healthy controls. Pathway enrichment analyses indicated that most of the identified proteins were related to chronic inflammation, atherosclerosis, and RCT. Altered proteins such as AZGP1, ABCA5, Calicin, PGLYRP2, HAVCR2 and C17ORF57 were further validated by Western blotting analysis of human plasma. Pathophysiological significance was studied using macrophage derived foam cell for their critical role in RCT which indicated the imbalance of RCT via the interaction of AZGP1 with CD36. In summary, this study revealed a unique relationship of some novel proteins apparently responsible for impaired RCT and chronic inflammation leading to atherothrombosis and myocardial infarction. SIGNIFICANCE: In the present study we identified ≥2500 unique circulating proteins in healthy control and clinically diagnosed STEMI subjects among which 423 proteins were found to be common in both the groups. We further show 64 proteins significantly different between healthy control and STEMI subjects. Proteomic analyses reveal a panel of proteins associated with atherosclerosis and STEMI. One of the proteins, AZGP1, an adipokine, is likely to act as the missing link between chronic inflammation and cholesterol transport. Deregulation of reverse cholesterol transport might be orchestrated by AZGP1, CD36, ABCA5, and PPARÉ£ in STEMI subjects. The present study employs shotgun and quantitative proteomics followed by in vitro validations demonstrating a biochemical basis for reverse cholesterol transport in the local milieu of the luminal wall of the artery which are critical for plaque build-up and atherosclerosis.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Colesterol , Humanos , Proteômica , Sujeitos da Pesquisa
6.
J Proteomics ; 132: 155-66, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26581643

RESUMO

Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. BIOLOGICAL SIGNIFICANCE: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock-in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock-in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene expressions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh(Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo
7.
Eur J Cell Biol ; 95(6-7): 182-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27067261

RESUMO

To decipher the function(s) of HYPK, a huntingtin (HTT)-interacting protein with chaperone-like activity, we had previously identified 36 novel interacting partners of HYPK. Another 13 proteins were known earlier to be associated with HYPK. On the basis of analysis of the interacting partners of HYPK, it has been shown that HYPK may participate in diverse cellular functions relevant to Huntington's disease. In the present study, we identified additional 5 proteins by co-immunoprecipitation and co-localization. As of now we have 54 primary interactors of HYPK. From the database we collected 1026 unique proteins (secondary interactors) interacting with these 54 primary HYPK interacting partners. We observed that 10 primary and 91 secondary interacting proteins of HYPK are associated with two types of autophagy processes. We next tested the hypothesis that the hub, HYPK, might itself be involved in autophagy. Using mouse striatal STHdh(Q7)/Hdh(Q7) cell lines, we observed that over expression of HYPK significantly increased background cellular autophagy, while knock down of endogenous HYPK decreased the autophagy level as detected by altered LC3I conversion, BECN1 expression, cleavage of GFP from LC3-GFP, ATG5-ATG12 conjugate formation and expression of transcription factors like Tfeb, Srebp2 and Zkscan3. This result shows that HYPK, possibly with its interacting partners, induces autophagy. We further observed that N-terminal mutant HTT reduced the cellular levels of LC3II and BECN1, which could be recovered significantly upon over expression of HYPK in these cells. This result further confirms that HYPK could also be involved in clearing mutant HTT aggregates by augmenting autophagy pathway.


Assuntos
Proteínas de Transporte/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos
8.
PLoS One ; 7(12): e51415, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272104

RESUMO

Huntingtin Yeast Two-Hybrid Protein K (HYPK) is an intrinsically unstructured huntingtin (HTT)-interacting protein with chaperone-like activity. To obtain more information about the function(s) of the protein, we identified 27 novel interacting partners of HYPK by pull-down assay coupled with mass spectrometry and, further, 9 proteins were identified by co-localization and co-immunoprecipitation (co-IP) assays. In neuronal cells, (EEF1A1 and HSPA1A), (HTT and LMNB2) and (TP53 and RELA) were identified in complex with HYPK in different experiments. Various Gene Ontology (GO) terms for biological processes, like protein folding (GO: 0006457), response to unfolded protein (GO: 0006986), cell cycle arrest (GO: 0007050), anti-apoptosis (GO: 0006916) and regulation of transcription (GO: 0006355) were significantly enriched with the HYPK-interacting proteins. Cell growth and the ability to refold heat-denatured reporter luciferase were decreased, but cytotoxicity was increased in neuronal cells where HYPK was knocked-down using HYPK antisense DNA construct. The proportion of cells in different phases of cell cycle was also altered in cells with reduced levels of HYPK. These results show that HYPK is involved in several biological processes, possibly through interaction with its partners.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Ciclo Celular , Morte Celular , Proliferação de Células , Sobrevivência Celular , Biologia Computacional/métodos , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo/métodos , Humanos , Proteína Huntingtina , Imuno-Histoquímica/métodos , Espectrometria de Massas/métodos , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ligação Proteica , Dobramento de Proteína , Técnicas do Sistema de Duplo-Híbrido , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA