RESUMO
The field of tissue engineering has been long seeking to develop functional muscle tissue that closely resembles natural muscle. This study used a bio-inspired assembly based on the surface tension mechanism to develop a novel method for engineering muscle tissue. This approach enabled uniaxially ordered electrospun fibers to naturally collide into an aligned bundle without the need for manual handling, thereby reducing cell damage during the cell culture procedure. During the assembly procedure, C2C12 myoblasts were cultured in a viscous collagen hydrogel that caused wetting while providing adequate structural stability for the cell-fiber construct. In addition, gene expression analysis of the resulting muscle-like fibril bundle revealed improved myogenic differentiation. These findings highlight the potential of using a collagen hydrogel and the surface tension mechanism to construct biologically relevant muscle tissue, offering a promising strategy that may outperform existing approaches. Overall, this study contributes to the development of advanced tissue engineering methods and brings us a step closer to creating functional muscle tissue for therapeutic and regenerative medicine applications.
Assuntos
Biomimética , Engenharia Tecidual , Tensão Superficial , Músculos , HidrogéisAssuntos
Derme/patologia , Fibroblastos/metabolismo , Gases em Plasma , Cicatrização , Citoesqueleto de Actina/ultraestrutura , Actinas/biossíntese , Actinas/genética , Antígenos CD/biossíntese , Antígenos CD/genética , Caderinas/biossíntese , Caderinas/genética , Forma Celular , Transdiferenciação Celular , Células Cultivadas , Fibroblastos/ultraestrutura , Fibrose/prevenção & controle , Humanos , Técnicas In Vitro , RNA Mensageiro/biossíntese , Vimentina/biossíntese , Vimentina/genéticaRESUMO
Normal healing of skin wounds involves a complex interplay between many different cellular constituents, including keratinocytes, immune cells, fibroblasts, myofibroblasts, as well as extracellular matrices. Especially, fibroblasts play a critical role in regulating the immune response and matrix reconstruction by secreting many cytokines and matrix proteins. Myofibroblasts, which are differentiated form of fibroblasts, feature high cellular contractility and encourage the synthesis of matrix proteins to promote faster closure of the wounds. We focus on the functional characteristics of these myofibroblasts as the healing strategy for severe wounds where the surplus amount of matrix proteins could be beneficial for better regeneration. In this study, we first employed multiple physicochemical cues, namely topographical alignment, TGF-ß1, and electrical field (EF), to induce differentiation of dermal fibroblasts into myofibroblasts, and to further activate the differentiated cells. We then used these cells in a mouse wound model to verify their potential as a transplantable substitute for the severe wound. Our results confirmed that physicochemically stimulated myofibroblasts promoted faster healing of the wound compared to the case with non-stimulated myofibroblasts through elevated matrix reconstruction in the mouse model. Conclusively, we propose the utilization of physicochemically tuned myofibroblasts as a novel strategy for promoting better healing of moderate to severe wounds.
Assuntos
Diferenciação Celular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , HumanosRESUMO
Glucagon-like peptide 1 (GLP-1) can increase pancreatic ß-cells, and α-cells could be a source for new ß-cell generation. We investigated whether GLP-1 increases ß-cells through α-cell transdifferentiation. New ß-cells originating from non-ß-cells were significantly increased in recombinant adenovirus expressing GLP-1 (rAd-GLP-1)-treated RIP-CreER;R26-YFP mice. Proliferating α-cells were increased in islets of rAd-GLP-1-treated mice and αTC1 clone 9 (αTC1-9) cells treated with exendin-4, a GLP-1 receptor agonist. Insulin+glucagon+ cells were significantly increased by rAd-GLP-1 or exendin-4 treatment in vivo and in vitro. Lineage tracing to label the glucagon-producing α-cells showed a higher proportion of regenerated ß-cells from α-cells in rAd-GLP-1-treated Glucagon-rtTA;Tet-O-Cre;R26-YFP mice than rAd producing ß-galactosidase-treated mice. In addition, exendin-4 increased the expression and secretion of fibroblast growth factor 21 (FGF21) in αTC1-9 cells and ß-cell-ablated islets. FGF21 treatment of ß-cell-ablated islets increased the expression of pancreatic and duodenal homeobox-1 and neurogenin-3 and significantly increased insulin+glucagon+ cells. Generation of insulin+glucagon+ cells by exendin-4 was significantly reduced in islets transfected with FGF21 small interfering RNA or islets of FGF21 knockout mice. Generation of insulin+ cells by rAd-GLP-1 treatment was significantly reduced in FGF21 knockout mice compared with wild-type mice. We suggest that GLP-1 has an important role in α-cell transdifferentiation to generate new ß-cells, which might be mediated, in part, by FGF21 induction.
Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/genética , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Regeneração/efeitos dos fármacosRESUMO
Glucagon-like peptide-1 (GLP1) has many anti-diabetic actions and also increases energy expenditure in vivo As skeletal muscle is a major organ controlling energy metabolism, we investigated whether GLP1 can affect energy metabolism in muscle. We found that treatment of differentiated C2C12 cells with exendin-4 (Ex-4), a GLP1 receptor agonist, reduced oleate:palmitate-induced lipid accumulation and triglyceride content compared with cells without Ex-4 treatment. When we examined the oxygen consumption rate (OCR), not only the basal OCR but also the OCR induced by oleate:palmitate addition was significantly increased in Ex-4-treated differentiated C2C12 cells, and this was inhibited by exendin-9, a GLP1 receptor antagonist. The expression of uncoupling protein 1 (UCP1), ß3-adrenergic receptor, peroxisome proliferator-activator receptor a (PPARa) and farnesoid X receptor mRNA was significantly upregulated in Ex-4-treated differentiated C2C12 cells, and the upregulation of these mRNA was abolished by treatment with adenylate cyclase inhibitor (2'5'-dideoxyadenosine) or PKA inhibitor (H-89). As well, intramuscular injection of Ex-4 into diet-induced obese mice significantly increased the expression of UCP1, PPARa and p-AMPK in muscle. We suggest that exposure to GLP1 increases energy expenditure in muscle through the upregulation of fat oxidation and thermogenic gene expression, which may contribute to reducing obesity and insulin resistance.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Peptídeos/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética , Peçonhas/farmacologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Exenatida , Ácidos Graxos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Músculo Esquelético/metabolismo , PPAR alfa/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo , Proteína Desacopladora 1/metabolismoRESUMO
G protein-coupled receptor (GPR) 119 is expressed in pancreatic ß-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes.