Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 3): 561-570, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952234

RESUMO

Operando powder X-ray diffraction (PXRD) is a widely employed method for the investigation of structural evolution and phase transitions in electrodes for rechargeable batteries. Due to the advantages of high brilliance and high X-ray energies, the experiments are often carried out at synchrotron facilities. It is known that the X-ray exposure can cause beam damage in the battery cell, resulting in hindrance of the electrochemical reaction. This study investigates the extent of X-ray beam damage during operando PXRD synchrotron experiments on battery materials with varying X-ray energies, amount of X-ray exposure and battery cell chemistries. Battery cells were exposed to 15, 25 or 35 keV X-rays (with varying dose) during charge or discharge in a battery test cell specially designed for operando experiments. The observed beam damage was probed by µPXRD mapping of the electrodes recovered from the operando battery cell after charge/discharge. The investigation reveals that the beam damage depends strongly on both the X-ray energy and the amount of exposure, and that it also depends strongly on the cell chemistry, i.e. the chemical composition of the electrode.

2.
Angew Chem Int Ed Engl ; 59(35): 15191-15194, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32412132

RESUMO

Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2 AgBiBr6 , shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2 AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag-Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.

3.
Adv Mater ; 34(10): e2110048, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34969158

RESUMO

Metal-organic frameworks (MOFs) hold great promise as high-energy anode materials for next-generation lithium-ion batteries (LIBs) due to their tunable chemistry, pore structure and abundant reaction sites. However, the pore structure of crystalline MOFs tends to collapse during lithium-ion insertion and extraction, and hence, their electrochemical performances are rather limited. As a critical breakthrough, a MOF glass anode for LIBs has been developed in the present work. In detail, it is fabricated by melt-quenching Cobalt-ZIF-62 (Co(Im)1.75 (bIm)0.25 ) to glass, and then by combining glass with carbon black and binder. The derived anode exhibits high lithium storage capacity (306 mAh g-1 after 1000 cycles at of 2 A g-1 ), outstanding cycling stability, and superior rate performance compared with the crystalline Cobalt-ZIF-62 and the amorphous one prepared by high-energy ball-milling. Importantly, it is found that the Li-ion storage capacity of the MOF glass anode continuously rises with charge-discharge cycling and even tripled after 1000 cycles. Combined spectroscopic and structural analyses, along with density functional theory calculations, reveal the origin of the cycling-induced enhancement of the performances of the MOF glass anode, that is, the increased distortion and local breakage of the CoN coordination bonds making the Li-ion intercalation sites more accessible.

4.
Nanoscale ; 11(25): 12347-12357, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31215584

RESUMO

Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order-disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g-1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge-discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge-discharge cycling, the structure of this composite is retained and stores Li through a complete solid-solution transition with a remarkably small volume change of only 1 vol%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA