Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Mind (Camb) ; 7: 675-690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840757

RESUMO

Human response times conform to several regularities including the Hick-Hyman law, the power law of practice, speed-accuracy trade-offs, and the Stroop effect. Each of these has been thoroughly modeled in isolation, but no account describes these phenomena as predictions of a unified framework. We provide such a framework and show that the phenomena arise as decoding times in a simple neural rate code with an entropy stopping threshold. Whereas traditional information-theoretic encoding systems exploit task statistics to optimize encoding strategies, we move this optimization to the decoder, treating it as a Bayesian ideal observer that can track transmission statistics as prior information during decoding. Our approach allays prominent concerns that applying information-theoretic perspectives to modeling brain and behavior requires complex encoding schemes that are incommensurate with neural encoding.

2.
Front Neurosci ; 9: 289, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379482

RESUMO

While it is widely recognized that thinking is somehow costly, involving cognitive effort and producing mental fatigue, these costs have alternatively been assumed to exist, treated as the brain's assessment of lost opportunities, or suggested to be metabolic but with implausible biological bases. We present a model of cognitive cost based on the novel idea that the brain senses and plans for longer-term allocation of metabolic resources by purposively conserving brain activity. We identify several distinct ways the brain might control its metabolic output, and show how a control-theoretic model that models decision-making with an energy budget can explain cognitive effort avoidance in terms of an optimal allocation of limited energetic resources. The model accounts for both subject responsiveness to reward and the detrimental effects of hypoglycemia on cognitive function. A critical component of the model is using astrocytic glycogen as a plausible basis for limited energetic reserves. Glycogen acts as an energy buffer that can temporarily support high neural activity beyond the rate supported by blood glucose supply. The published dynamics of glycogen depletion and repletion are consonant with a broad array of phenomena associated with cognitive cost. Our model thus subsumes both the "cost/benefit" and "limited resource" models of cognitive cost while retaining valuable contributions of each. We discuss how the rational control of metabolic resources could underpin the control of attention, working memory, cognitive look ahead, and model-free vs. model-based policy learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA