Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783095

RESUMO

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.

2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902118

RESUMO

Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.


Assuntos
Nitrosaminas , Dano ao DNA , Alquilação , Reparo do DNA , Alquilantes/farmacologia , Adutos de DNA
3.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100981

RESUMO

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Recombinação Homóloga , Survivina/metabolismo , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Núcleo Celular/genética , Proliferação de Células , Dano ao DNA , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Survivina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nucleic Acids Res ; 48(21): 12085-12101, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166399

RESUMO

Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Senescência Celular/genética , DNA/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F4/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , Dano ao DNA , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Células MCF-7 , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos da radiação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
5.
Carcinogenesis ; 42(8): 1110-1118, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34115837

RESUMO

The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts. It is well established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCECs). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated colorectal cancer.


Assuntos
Colo/metabolismo , Guanina/análogos & derivados , Mucosa Intestinal/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Linhagem Celular , Colo/citologia , Dano ao DNA , Reparo do DNA , Guanina/metabolismo , Humanos , Mucosa Intestinal/citologia
6.
Arch Toxicol ; 93(8): 2265-2277, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31289894

RESUMO

A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Reparo de Erro de Pareamento de DNA/genética , Irinotecano/farmacologia , Oligopeptídeos/farmacologia , Proteína Supressora de Tumor p53/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Irinotecano/administração & dosagem , Proteína 2 Homóloga a MutS/genética , Oligopeptídeos/administração & dosagem , Tioléster Hidrolases/metabolismo , Inibidores da Topoisomerase I/farmacologia , Proteína Supressora de Tumor p53/metabolismo
7.
Mol Pharmacol ; 94(6): 1334-1351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30262596

RESUMO

Low survival rates of patients with metastatic triple-negative breast cancer (TNBC) and melanoma, in which current therapies are ineffective, emphasize the need for new therapeutic approaches. Integrin ß1 appears to be a promising target when combined with chemotherapy, but recent data have shown that its inactivation increases metastatic potential owing to the compensatory upregulation of other integrin subunits. Consequently, we analyzed the potential of integrin subunits αv, α3, or α4 as targets for improved therapy in seven TNBC and melanoma cell lines. Experiments performed in an integrin αvß1-negative melanoma cell line, MDA-MB-435S, showed that knockdown of integrin subunit αv increased sensitivity to microtubule poisons vincristine or paclitaxel and decreased migration and invasion. In the MDA-MB-435S cell line, we also identified a phenomenon in which change in the expression of one integrin subunit changes the expression of other integrins, leading to an unpredictable influence on sensitivity to anticancer drugs and cell migration, referred to as the integrin switching effect. In a panel of six TNBCs and melanoma cell lines, the contribution of integrins αv versus integrins αvß3/ß5 was assessed by the combined action of αv-specific small interfering RNA or αvß3/ß5 inhibitor cilengitide with paclitaxel. Our results suggest that, for TNBC, knockdown of integrin αv in combination with paclitaxel presents a better therapeutic option than a combination of cilengitide with paclitaxel; however, in melanoma, neither of these combinations is advisable because a decreased sensitivity to paclitaxel was observed.


Assuntos
Integrina alfaV/genética , Melanoma/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Venenos/farmacologia , Venenos de Serpentes/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/genética
8.
J Neurochem ; 144(2): 139-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29164620

RESUMO

Therapy of malignant glioma relies on treatment with the O6 -methylating agent temozolomide (TMZ) concomitant with ionizing radiation followed by adjuvant TMZ. For the treatment of recurrences, DNA chloroethylating drugs are also used. The main killing lesion induced by these drugs is O6 -alkylguanine. Since this damage is repaired by O6 -methylguanine-DNA methyltransferase (MGMT), the repair enzyme represents a most important factor of drug resistance, limiting the therapy of malignant high-grade gliomas. Although MGMT has been shown to be transcriptionally up-regulated in rodents following genotoxic stress, it is still unclear whether human MGMT is subject to up-regulation. Here, we addressed the question whether MGMT in glioma cells is enhanced following alkylating drugs or ionizing radiation, using promoter assays. We also checked the response of glioma cell lines to dexamethasone. In a series of experiments, we found no evidence that the human MGMT promoter is significantly up-regulated following treatment with TMZ, the chloroethylating agent nimustine or radiation. It was activated, however, by dexamethasone. Using deletion constructs, we further show that the basal level of MGMT is mainly determined by the transcription factor SP1. The high amount of SP1 sites in the MGMT promoter likely prevents transcriptional up-regulation following genotoxic stress by neutralizing inducible signals. The regulation of MGMT by miRNAs plays only a minor role, as shown by DICER knockdown experiments. Since high dose dexamethasone concomitant with temozolomide is frequently used in glioblastoma therapy, induction of the MGMT gene through glucocorticoids in MGMT promoter unmethylated cases might cause further elevation of drug resistance, while radiation and alkylating drugs seem not to induce MGMT at transcriptional level.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Enzimas Reparadoras do DNA/genética , Glucocorticoides/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/genética , Fator de Transcrição Sp1/genética , Temozolomida/farmacologia , Enzimas Reparadoras do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/efeitos da radiação , Dexametasona/farmacologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos da radiação , Técnicas de Silenciamento de Genes , Humanos , O(6)-Metilguanina-DNA Metiltransferase/efeitos dos fármacos , O(6)-Metilguanina-DNA Metiltransferase/efeitos da radiação , Regiões Promotoras Genéticas/genética , RNA Mensageiro/farmacologia , Fator de Transcrição Sp1/efeitos dos fármacos , Fator de Transcrição Sp1/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
9.
Arch Toxicol ; 92(8): 2645-2648, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29947891

RESUMO

Survivin is a well-established target in experimental cancer therapy. While hardly expressed in normal tissues, it is over-expressed in most human tumors, including colorectal cancer (CRC). Different compartmentalization of Survivin enables its multiple functions as a key controller of cell division, apoptosis, stress-induced signaling and also of migration and metastasis. Because of the lack of its enzymatic activity, this oncoprotein is considered to be undruggable. Nevertheless, small-molecule interfacial inhibitors interfering with its dimerization and/or disrupting the Survivin-Ran protein complex were shown to be potent drugs causing Survivin proteasomal degradation and inducing apoptosis in cancer cells. Based on our results with different CRC cell lines, we show that the Survivin inhibitor LLP3 might be effective as mono-therapy in the subgroup of p53-proficient and also some p53-mutated tumors, independent of mismatch repair status. When combined with irinotecan, expression of the tumor suppressor X-linked inhibitor of apoptosis factor 1 (XAF1) plays a decisive role for sensitization of CRC cells to this first-line drug, however, only in the p53-mutated background. The combination treatment with IT should be avoided in p53-proficient tumors independent of XAF1 expression, since no sensitization to or even protection against moderate-toxic concentrations of IT might occur.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Survivina/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Clorofenóis/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Irinotecano/administração & dosagem , Mutação , Proteínas de Neoplasias/genética , Piridonas/administração & dosagem
10.
Arch Toxicol ; 92(6): 2119-2135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589053

RESUMO

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA , Doxorrubicina/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hidroxiureia/farmacologia , Proteínas WT1/metabolismo , Animais , Apoptose/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Tubas Uterinas/efeitos dos fármacos , Feminino , Humanos , Células K562 , Camundongos Knockout , Cultura Primária de Células , Proteínas WT1/genética
11.
Nucleic Acids Res ; 44(22): 10727-10743, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694624

RESUMO

A coordinated and faithful DNA damage response is of central importance for maintaining genomic integrity and survival. Here, we show that exposure of human cells to benzo(a)pyrene 9,10-diol-7,8-epoxide (BPDE), the active metabolite of benzo(a)pyrene (B(a)P), which represents a most important carcinogen formed during food preparation at high temperature, smoking and by incomplete combustion processes, causes a prompt and sustained upregulation of the DNA repair genes DDB2, XPC, XPF, XPG and POLH. Induction of these repair factors on RNA and protein level enhanced the removal of BPDE adducts from DNA and protected cells against subsequent BPDE exposure. However, through the induction of POLH the mutation frequency in the surviving cells was enhanced. Activation of these adaptive DNA repair genes was also observed upon B(a)P treatment of MCF7 cells and in buccal cells of human volunteers after cigarette smoking. Our data provide a rational basis for an adaptive response to polycyclic aromatic hydrocarbons, which occurs however at the expense of mutations that may drive cancer formation.


Assuntos
Apoptose , Reparo do DNA , Ativação Transcricional , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Sobrevivência Celular , Adutos de DNA/genética , Adutos de DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Retroalimentação Fisiológica , Humanos , Células MCF-7 , Mutagênicos/farmacologia , Fator de Transcrição AP-1/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
12.
Arch Toxicol ; 91(5): 2191-2208, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27807597

RESUMO

The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leucemia/tratamento farmacológico , Leucemia/patologia , Tretinoína/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Leucemia/metabolismo , NF-kappa B/metabolismo , Piridinas/farmacologia , Fator de Transcrição STAT1/metabolismo , Tretinoína/administração & dosagem
13.
Nucleic Acids Res ; 41(18): 8403-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892398

RESUMO

DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.


Assuntos
Reparo do DNA , Ativação Transcricional , Adaptação Fisiológica/genética , Animais , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Epigênese Genética , Humanos , Mutagênicos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo
14.
Biochim Biophys Acta ; 1833(8): 1832-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23578789

RESUMO

To counteract genotoxic stress, DNA repair functions are in effect. Most of them are constitutively expressed while some of them can be up-regulated depending on the level of DNA damage. In human cells, only few DNA repair functions are subject of induction following DNA damage, and thus there is a need to identify and characterize inducible repair functions more thoroughly. Here, we provide evidence that the "three prime exonuclease I" (TREX1) is up-regulated in human fibroblasts and cancer cells on mRNA and protein level. Transcriptional upregulation of TREX1 was observed upon exposure to ultraviolet light and various anticancer drugs in glioma and malignant melanoma cells. Induction of TREX1 was found following treatment with the crosslinking alkylating agents nimustine, carmustine, fotemustine and the topoisomerase I inhibitor topotecan, but not following temozolomide, etoposide and ionizing radiation. Induction of TREX1 following DNA damage requires the AP-1 components c-Jun and c-Fos, as shown by siRNA knockdown, EMSA experiments, ChIP analysis and reporter assays with the TREX1 promoter and constructs harboring mutations in the AP-1 binding site. To analyze whether TREX1 expression impacts the sensitivity of cancer cells to therapeutics, TREX1 expression was down-regulated by siRNA in malignant glioma and melanoma cells. TREX1 knockdown resulted in enhanced cell death following nimustine, fotemustine and topotecan and to a reduced recovery from the anticancer drug induced block to replication. The data revealed that induction of TREX1 is a survival response evoked by various genotoxic anticancer drugs and identified TREX1 as a potential therapeutic target for anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/genética , Exodesoxirribonucleases/genética , Glioma/genética , Melanoma/genética , Fosfoproteínas/genética , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos , Exodesoxirribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes jun/genética , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação/efeitos dos fármacos , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Regulação para Cima/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 108(52): 21105-10, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160723

RESUMO

Monocytes are key players in the immune system. Crossing the blood barrier, they infiltrate tissues and differentiate into (i) macrophages that fight off pathogens and (ii) dendritic cells (DCs) that activate the immune response. A hallmark of monocyte/macrophage activation is the generation of reactive oxygen species (ROS) as a defense against invading microorganisms. How monocytes, macrophages, and DCs in particular respond to ROS is largely unknown. Here we studied the sensitivity of primary human monocytes isolated from peripheral blood and compared them with macrophages and DCs derived from them by cytokine maturation following DNA damage induced by ROS. We show that monocytes are hypersensitive to ROS, undergoing excessive apoptosis. These cells exhibited a high yield of ROS-induced DNA single- and double-strand breaks and activation of the ATR-Chk1-ATM-Chk2-p53 pathway that led to Fas and caspase-8, -3, and -7 activation, whereas macrophages and DCs derived from them were protected. Monocytes are also hypersensitive to ionizing radiation and oxidized low-density lipoprotein. The remarkable sensitivity of monocytes to oxidative stress is caused by a lack of expression of the DNA repair proteins XRCC1, ligase IIIα, poly(ADP-ribose) polymerase-1, and catalytic subunit of DNA-dependent protein kinase (DNA-PK(cs)), causing a severe DNA repair defect that impacts base excision repair and double-strand break repair by nonhomologous end-joining. During maturation of monocytes into macrophages and DCs triggered by the cytokines GM-CSF and IL-4, these proteins become up-regulated, making macrophages and DCs repair-competent and ROS-resistant. We propose that impaired DNA repair in monocytes plays a role in the regulation of the monocyte/macrophage/DC system following ROS exposure.


Assuntos
Quebras de DNA de Cadeia Dupla , Células Dendríticas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Estresse Oxidativo/imunologia , Apoptose/imunologia , Western Blotting , Diferenciação Celular/imunologia , Centrifugação , Ensaio Cometa , Primers do DNA/genética , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Macrófagos/metabolismo , Oligonucleotídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Anticancer Res ; 44(3): 901-910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423634

RESUMO

BACKGROUND/AIM: Fisetin is a yellow-coloring flavonoid that can be found in a wide variety of plants, vegetables, and fruits, such as strawberries, apples, and grapes. It has been shown to have biological activity by targeting different pathways regulating survival and death and to bear antioxidant and anti-inflammatory activity. Fisetin was shown to be cytotoxic on different cancer cell lines and has the ability to kill therapy-induced senescent cancer cells. The aim of the study was to investigate the DNA damaging and cytotoxic potential of fisetin and its ability to enhance the killing effect of temozolomide on glioblastoma cells. MATERIALS AND METHODS: We used LN229 glioblastoma cells and measured survival and apoptosis by flow cytometry, DNA strand breaks by the alkaline comet and γH2AX assay, and the DNA damage response by western blot analysis. RESULTS: Fisetin was cytotoxic on glioblastoma cells, inducing apoptosis. In the dose range of 40-80 µM it also induced DNA damage, as measured by the alkaline comet and γH2AX assay, and triggered DNA damage response, as revealed by p53 activation. Furthermore, fisetin enhanced the genotoxic effect of methyl methanesulfonate, presumably due to inhibition of DNA repair processes. When administered together with temozolomide, the first-line therapeutic for glioblastoma, it enhanced cell death, reduced the yield of senescent cells following treatment and exhibited senolytic activity on glioblastoma cells. CONCLUSION: Data show that high-dose fisetin has a genotoxic potential and suggest that, harnessing the cytotoxic and senolytic activity of the flavonoid, it may enhance the effect of anticancer drugs and eliminate therapy-induced senescent cells. Therefore, it may be useful for adjuvant cancer therapy, including glioblastoma, which is worth to be studied in clinical trials.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Senoterapia , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Apoptose , Dano ao DNA , Linhagem Celular Tumoral , DNA
17.
Biochim Biophys Acta ; 1823(7): 1199-207, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22609303

RESUMO

FRA1 belongs, together with c-Fos and FosB, to the family of Fos proteins that form with members of the ATF and Jun family the transcription factor AP-1 (activator protein 1). Previously we showed that c-Fos protects mouse embryonic fibroblasts against the cytotoxic effects of ultraviolet (UV) light by induction of the endonuclease XPF, leading to enhanced nucleotide excision repair (NER) activity. Here, we analyzed the regulation of FRA1 in glioma cells treated with the anticancer drug nimustine (ACNU) and its role in ACNU-induced toxicity. We show that FRA1 is upregulated in glioblastoma cells following ACNU on mRNA and protein levels. Knockdown of FRA1 by either siRNA or shRNA clearly sensitized glioma cells towards ACNU-induced cell death. Despite decreased AP-1 binding activity upon FRA1 knockdown, this effect is independent on regulation of the AP-1 target genes fasL, ercc1 and xpf. In addition, FRA1 knockdown does not affect DNA repair capacity. However, lack of FRA1 attenuated the ACNU-induced phosphorylation of CHK1 and led to a reduced arrest of cells in G2/M and, thereby, presumably leads to enhanced cell death in the subsequent cell cycle.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/tratamento farmacológico , Nimustina/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reparo do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Ligante Fas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Nimustina/farmacologia , Fator de Transcrição AP-1/metabolismo
18.
Biochim Biophys Acta ; 1816(2): 179-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21745538

RESUMO

O(6)-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O(6)-methylguanine. It also repairs larger adducts on the O(6)-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O(6)-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O(6)-alkylating drugs are still lacking.


Assuntos
Neoplasias/enzimologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Regiões Promotoras Genéticas , Animais , Metilação de DNA , Humanos , Imuno-Histoquímica , O(6)-Metilguanina-DNA Metiltransferase/análise , O(6)-Metilguanina-DNA Metiltransferase/genética , Prognóstico
19.
Mutat Res ; 736(1-2): 64-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21708177

RESUMO

Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.


Assuntos
Neoplasias/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fumaça , Fumar/genética , Carcinógenos/toxicidade , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Neoplasias/prevenção & controle , Polimorfismo Genético , Regiões Promotoras Genéticas , Risco , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Cell Mol Life Sci ; 68(10): 1785-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20976523

RESUMO

The oncoprotein c-Fos has been commonly found differently expressed in cancer cells. Our previous work showed that mouse cells lacking the immediate-early gene c-fos are hypersensitive to ultraviolet (UVC) light. Here, we demonstrate that in human diploid fibroblasts UV-triggered induction of c-Fos protein is a delayed and long-lasting event. Sustained upregulation of c-Fos goes along with transcriptional stimulation of the NER gene xpf, which harbors an AP-1 binding site in the promoter. Data gained on c-Fos knockdown and c-Fos overexpressing human cells provide evidence that c-Fos/AP-1 stimulates upregulation of XPF, thereby increasing the cellular repair capacity protecting from UVC-induced DNA damage. When these cells are pre-exposed to a low non-toxic UVC dose and challenged with a subsequent high dose of UVC irradiation, they show accelerated repair of UVC-induced DNA adducts and reduced cell kill. The data indicate a protective role of c-Fos induction by triggering an adaptive response pathway.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Raios Ultravioleta , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA