Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7906): 553-556, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240676

RESUMO

The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 20211 immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We2 and others3-6 recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. 2,3,5,6). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. 2-4,6). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Nature ; 602(7898): 676-681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016198

RESUMO

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Evolução Molecular , Humanos , Soros Imunes/imunologia , Concentração Inibidora 50 , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
3.
Nature ; 603(7902): 693-699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062016

RESUMO

The Omicron (B.1.1.529) variant of SARS-CoV-2 emerged in November 2021 and is rapidly spreading among the human population1. Although recent reports reveal that the Omicron variant robustly escapes vaccine-associated and therapeutic neutralization antibodies2-10, the pathogenicity of the virus remains unknown. Here we show that the replication of Omicron is substantially attenuated in human Calu3 and Caco2 cells. Further mechanistic investigations reveal that Omicron is inefficient in its use of transmembrane serine protease 2 (TMPRSS2) compared with wild-type SARS-CoV-2 (HKU-001a) and previous variants, which may explain its reduced replication in Calu3 and Caco2 cells. The replication of Omicron is markedly attenuated in both the upper and lower respiratory tracts of infected K18-hACE2 mice compared with that of the wild-type strain and Delta (B.1.617.2) variant, resulting in its substantially ameliorated lung pathology. Compared with wild-type SARS-CoV-2 and the Alpha (B.1.1.7), Beta (1.351) and Delta variants, infection by Omicron causes the lowest reduction in body weight and the lowest mortality rate. Overall, our study demonstrates that the replication and pathogenicity of the Omicron variant of SARS-CoV-2 in mice is attenuated compared with the wild-type strain and other variants.


Assuntos
COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , Células CACO-2 , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Virulência
4.
Nature ; 609(7928): 785-792, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35922005

RESUMO

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Assuntos
Ácido Aspártico , Caspase 6 , Infecções por Coronavirus , Coronavirus , Cisteína , Interações Hospedeiro-Patógeno , Replicação Viral , Animais , Apoptose , Ácido Aspártico/metabolismo , Caspase 6/metabolismo , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Cricetinae , Cisteína/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Humanos , Interferons/antagonistas & inibidores , Interferons/imunologia , Pulmão/patologia , Mesocricetus , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Taxa de Sobrevida , Redução de Peso
5.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
6.
Proc Natl Acad Sci U S A ; 120(17): e2300376120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068258

RESUMO

The high transmissibility of SARS-CoV-2 Omicron subvariants was generally ascribed to immune escape. It remained unclear whether the emerging variants have gradually acquired replicative fitness in human respiratory epithelial cells. We sought to evaluate the replicative fitness of BA.5 and earlier variants in physiologically active respiratory organoids. BA.5 exhibited a dramatically increased replicative capacity and infectivity than B.1.1.529 and an ancestral strain wildtype (WT) in human nasal and airway organoids. BA.5 spike pseudovirus showed a significantly higher entry efficiency than that carrying WT or B.1.1.529 spike. Notably, we observed prominent syncytium formation in BA.5-infected nasal and airway organoids, albeit elusive in WT- and B.1.1.529-infected organoids. BA.5 spike-triggered syncytium formation was verified by lentiviral overexpression of spike in nasal organoids. Moreover, BA.5 replicated modestly in alveolar organoids, with a significantly lower titer than B.1.1.529 and WT. Collectively, the higher entry efficiency and fusogenic activity of BA.5 spike potentiated viral spread through syncytium formation in the human airway epithelium, leading to enhanced replicative fitness and immune evasion, whereas the attenuated replicative capacity of BA.5 in the alveolar organoids may account for its benign clinical manifestation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Nariz , Organoides , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
7.
J Med Virol ; 96(2): e29472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373201

RESUMO

Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Replicação Viral , Pulmão , Interferons , Células Epiteliais , Antivirais/farmacologia
8.
J Med Virol ; 95(1): e28326, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36411262

RESUMO

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Técnicas de Cultura de Células , Genoma Viral , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
9.
Clin Infect Dis ; 74(11): 1933-1950, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34406358

RESUMO

BACKGROUND: Post-vaccination myopericarditis is reported after immunization with coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. The effect of inadvertent intravenous injection of this vaccine on the heart is unknown. METHODS: We compared the clinical manifestations, histopathological changes, tissue mRNA expression, and serum levels of cytokine/chemokine and troponin in Balb/c mice at different time points after intravenous (IV) or intramuscular (IM) vaccine injection with normal saline (NS) control. RESULTS: Although significant weight loss and higher serum cytokine/chemokine levels were found in IM group at 1-2 days post-injection (dpi), only IV group developed histopathological changes of myopericarditis as evidenced by cardiomyocyte degeneration, apoptosis, and necrosis with adjacent inflammatory cell infiltration and calcific deposits on visceral pericardium, although evidence of coronary artery or other cardiac pathologies was absent. Serum troponin level was significantly higher in IV group. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen expression by immunostaining was occasionally found in infiltrating immune cells of the heart or injection site, in cardiomyocytes and intracardiac vascular endothelial cells, but not skeletal myocytes. The histological changes of myopericarditis after the first IV-priming dose persisted for 2 weeks and were markedly aggravated by a second IM- or IV-booster dose. Cardiac tissue mRNA expression of interleukin (IL)-1ß, interferon (IFN)-ß, IL-6, and tumor necrosis factor (TNF)-α increased significantly from 1 dpi to 2 dpi in the IV group but not the IM group, compatible with presence of myopericarditis in the IV group. Ballooning degeneration of hepatocytes was consistently found in the IV group. All other organs appeared normal. CONCLUSIONS: This study provided in vivo evidence that inadvertent intravenous injection of COVID-19 mRNA vaccines may induce myopericarditis. Brief withdrawal of syringe plunger to exclude blood aspiration may be one possible way to reduce such risk.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Quimiocinas , Citocinas , Células Endoteliais , Humanos , Injeções Intravenosas , Camundongos , RNA Mensageiro , SARS-CoV-2 , Troponina , Vacinas Sintéticas , Vacinas de mRNA
10.
Clin Infect Dis ; 75(1): e974-e990, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35178548

RESUMO

BACKGROUND: The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathogenesis of testicular damage is uncertain. METHODS: We investigated the virological, pathological, and immunological changes in testes of hamsters challenged by wild-type SARS-CoV-2 and its variants with intranasal or direct testicular inoculation using influenza virus A(H1N1)pdm09 as control. RESULTS: Besides self-limiting respiratory tract infection, intranasal SARS-CoV-2 challenge caused acute decrease in sperm count, serum testosterone and inhibin B at 4-7 days after infection; and chronic reduction in testicular size and weight, and serum sex hormone at 42-120 days after infection. Acute histopathological damage with worsening degree of testicular inflammation, hemorrhage, necrosis, degeneration of seminiferous tubules, and disruption of orderly spermatogenesis were seen with increasing virus inoculum. Degeneration and death of Sertoli and Leydig cells were found. Although viral loads and SARS-CoV-2 nucleocapsid protein expression were markedly lower in testicular than in lung tissues, direct intratesticular injection of SARS-CoV-2 demonstrated nucleocapsid expressing interstitial cells and epididymal epithelial cells, While intranasal or intratesticular challenge by A(H1N1)pdm09 control showed no testicular infection or damage. From 7 to 120 days after infection, degeneration and apoptosis of seminiferous tubules, immune complex deposition, and depletion of spermatogenic cell and spermatozoa persisted. Intranasal challenge with Omicron and Delta variants could also induce similar testicular changes. This testicular damage can be prevented by vaccination. CONCLUSIONS: SARS-CoV-2 can cause acute testicular damage with subsequent chronic asymmetric testicular atrophy and associated hormonal changes despite a self-limiting pneumonia in hamsters. Awareness of possible hypogonadism and subfertility is important in managing convalescent coronavirus disease 2019 in men.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Cricetinae , Humanos , Masculino , SARS-CoV-2 , Sêmen , Testículo
11.
Clin Infect Dis ; 75(1): e1101-e1111, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34536277

RESUMO

BACKGROUND: The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS: We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/ß-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/ß-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS: This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.


Assuntos
COVID-19 , Actinas , Animais , Anticorpos Neutralizantes , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão , Mesocricetus , SARS-CoV-2 , Temperatura
12.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35234870

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Surtos de Doenças , Feminino , Hong Kong/epidemiologia , Humanos , Mamíferos , RNA Viral/genética , SARS-CoV-2/genética
13.
Clin Infect Dis ; 73(2): e503-e512, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667973

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is primarily an acute respiratory tract infection. Distinctively, a substantial proportion of COVID-19 patients develop olfactory dysfunction. Especially in young patients, loss of smell can be the first or only symptom. The roles of inflammatory obstruction of the olfactory clefts, inflammatory cytokines affecting olfactory neuronal function, destruction of olfactory neurons or their supporting cells, and direct invasion of olfactory bulbs in causing olfactory dysfunction are uncertain. METHODS: We investigated the location for the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the olfactory epithelium (OE) to the olfactory bulb in golden Syrian hamsters. RESULTS: After intranasal inoculation with SARS-CoV-2, inflammatory cell infiltration and proinflammatory cytokine/chemokine responses were detected in the nasal turbinate tissues. The responses peaked between 2 and 4 days postinfection, with the highest viral load detected at day 2 postinfection. In addition to the pseudo-columnar ciliated respiratory epithelial cells, SARS-CoV-2 viral antigens were also detected in the mature olfactory sensory neurons labeled by olfactory marker protein, in the less mature olfactory neurons labeled by neuron-specific class III ß-tubulin at the more basal position, and in the sustentacular cells, resulting in apoptosis and severe destruction of the OE. During the entire course of infection, SARS-CoV-2 viral antigens were not detected in the olfactory bulb. CONCLUSIONS: In addition to acute inflammation at the OE, infection of mature and immature olfactory neurons and the supporting sustentacular cells by SARS-CoV-2 may contribute to the unique olfactory dysfunction related to COVID-19, which is not reported with SARS-CoV-2.


Assuntos
COVID-19 , Neurônios Receptores Olfatórios , Animais , Cricetinae , Humanos , Mesocricetus , Mucosa Olfatória , SARS-CoV-2
14.
Clin Infect Dis ; 72(12): e978-e992, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33216851

RESUMO

BACKGROUND: Clinical outcomes of the interaction between the co-circulating pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are unknown. METHODS: We established a golden Syrian hamster model coinfected by SARS-CoV-2 and mouse-adapted A(H1N1)pdm09 simultaneously or sequentially. The weight loss, clinical scores, histopathological changes, viral load and titer, and serum neutralizing antibody titer were compared with hamsters challenged by either virus. RESULTS: Coinfected hamsters had more weight loss, more severe lung inflammatory damage, and tissue cytokine/chemokine expression. Lung viral load, infectious virus titers, and virus antigen expression suggested that hamsters were generally more susceptible to SARS-CoV-2 than to A(H1N1)pdm09. Sequential coinfection with A(H1N1)pdm09 one day prior to SARS-CoV-2 exposure resulted in a lower lung SARS-CoV-2 titer and viral load than with SARS-CoV-2 monoinfection, but a higher lung A(H1N1)pdm09 viral load. Coinfection also increased intestinal inflammation with more SARS-CoV-2 nucleoprotein expression in enterocytes. Simultaneous coinfection was associated with delay in resolution of lung damage, lower serum SARS-CoV-2 neutralizing antibody, and longer SARS-CoV-2 shedding in oral swabs compared to that of SARS-CoV-2 monoinfection. CONCLUSIONS: Simultaneous or sequential coinfection by SARS-CoV-2 and A(H1N1)pdm09 caused more severe disease than monoinfection by either virus in hamsters. Prior A(H1N1)pdm09 infection lowered SARS-CoV-2 pulmonary viral loads but enhanced lung damage. Whole-population influenza vaccination for prevention of coinfection, and multiplex molecular diagnostics for both viruses to achieve early initiation of antiviral treatment for improvement of clinical outcome should be considered.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Cricetinae , Modelos Animais de Doenças , Humanos , Mesocricetus , Camundongos , SARS-CoV-2
15.
Clin Infect Dis ; 73(3): e719-e734, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33515458

RESUMO

BACKGROUND: Mass vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing amidst widespread transmission during the coronavirus disease-2019 (COVID-19) pandemic. Disease phenotypes of SARS-CoV-2 exposure occurring around the time of vaccine administration have not been described. METHODS: Two-dose (14 days apart) vaccination regimen with formalin-inactivated whole virion SARS-CoV-2 in golden Syrian hamster model was established. To investigate the disease phenotypes of a 1-dose regimen given 3 days prior (D-3), 1 (D1) or 2 (D2) days after, or on the day (D0) of virus challenge, we monitored the serial clinical severity, tissue histopathology, virus burden, and antibody response of the vaccinated hamsters. RESULTS: The 1-dose vaccinated hamsters had significantly lower clinical disease severity score, body weight loss, lung histology score, nucleocapsid protein expression in lung, infectious virus titers in the lung and nasal turbinate, inflammatory changes in intestines, and a higher serum neutralizing antibody or IgG titer against the spike receptor-binding domain or nucleocapsid protein when compared to unvaccinated controls. These improvements were particularly noticeable in D-3, but also in D0, D1, and even D2 vaccinated hamsters to varying degrees. No increased eosinophilic infiltration was found in the nasal turbinate, lung, and intestine after virus challenge. Significantly higher serum titer of fluorescent foci microneutralization inhibition antibody was detected in D1 and D2 vaccinated hamsters at day 4 post-challenge compared to controls despite undetectable neutralizing antibody titer. CONCLUSIONS: Vaccination just before or soon after exposure to SARS-CoV-2 does not worsen disease phenotypes and may even ameliorate infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Cricetinae , Humanos , Mesocricetus , Vacinas de Produtos Inativados
16.
Lancet ; 395(10223): 514-523, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31986261

RESUMO

BACKGROUND: An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. METHODS: In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. FINDINGS: From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36-66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3-6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6-10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. INTERPRETATION: Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. FUNDING: The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).


Assuntos
Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Adulto , Idoso , Betacoronavirus/classificação , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , China/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Saúde da Família , Genoma Viral , Humanos , Pessoa de Meia-Idade , Filogenia , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Radiografia Torácica , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Sequenciamento Completo do Genoma/métodos
17.
J Med Virol ; 93(4): 2076-2083, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33026649

RESUMO

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the coronavirus disease 19 (COVID-19) pandemic due to its high transmissibility and early immunosuppression. Previous studies on other betacoronaviruses suggested that betacoronavirus infection is associated with the host autophagy pathway. However, it is unclear whether any components of autophagy or virophagy can be therapeutic targets for COVID-19 treatment. In this report, we examined the antiviral effect of four well-characterized small molecule inhibitors that target the key cellular factors involved in key steps of the autophagy pathway. They include small molecules targeting the ULK1/Atg1 complex involved in the induction stage of autophagy (ULK1 inhibitor SBI0206965), the ATG14/Beclin1/VPS34 complex involved in the nucleation step of autophagy (class III PI3-kinase inhibitor VPS34-IN1), and a widely-used autophagy inhibitor that persistently inhibits class I and temporary inhibits class III PI3-kinase (3-MA) and a clinically approved autophagy inhibitor that suppresses autophagy by inhibiting lysosomal acidification and prevents the formation of autophagolysosome (HCQ). Surprisingly, not all the tested autophagy inhibitors suppressed SARS-CoV-2 infection. We showed that inhibition of class III PI3-kinase involved in the initiation step of both canonical and noncanonical autophagy potently suppressed SARS-CoV-2 at a nano-molar level. In addition, this specific kinase inhibitor VPS34-IN1, and its bioavailable analogue VVPS34-IN1, potently inhibited SARS-CoV-2 infection in ex vivo human lung tissues. Taken together, class III PI3-kinase may be a possible target for COVID-19 therapeutic development.


Assuntos
Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Pulmão , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Chlorocebus aethiops , Reposicionamento de Medicamentos , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Células Vero
18.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1445-1453, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32940786

RESUMO

Movement slowness, linked to dysfunctional basal ganglia and cerebellum, is prevalent but lacks effective therapy in patients with schizophrenia spectrum disorders. This study was to examine immediate effects of rhythmic auditory stimulation (RAS) on upper-limb movement speed in patients. Thirty patients and 30 psychiatrically healthy people executed the right-hand task and the both-hand task of the Purdue Pegboard Test when listening to RAS with two tempi: normal (equal to the fastest movement tempo for each participant without RAS) and fast (120% of the normal tempo). The testing order of the RAS tempi for each participant was randomized. Patients had lower scores of right-hand and both-hand tasks than did psychiatrically healthy people. Scores of right-hand and both-hand tasks were higher in the fast-RAS condition than the normal-RAS condition in participants. This is the first study to explore the possibility of applying RAS to movement therapy for patients with schizophrenia spectrum disorders. The results demonstrated that faster RAS was effective in inducing faster upper-limb movements in patients and psychiatrically healthy people, suggesting that manipulating RAS may be a feasible therapeutic strategy utilized to regulate movement speed. The RAS may involve alternative neural pathways to modulate movement speed and thus to compensate for impaired function of basal ganglia and cerebellum in patients.


Assuntos
Estimulação Acústica , Movimento , Esquizofrenia , Extremidade Superior , Humanos , Movimento/fisiologia , Esquizofrenia/fisiopatologia , Esquizofrenia/terapia , Resultado do Tratamento , Extremidade Superior/fisiologia
19.
Proc Natl Acad Sci U S A ; 115(26): 6822-6827, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891677

RESUMO

Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H7N2/patogenicidade , Influenza Humana , Organoides/virologia , Sistema Respiratório/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H7N2/crescimento & desenvolvimento , Organoides/patologia , Sistema Respiratório/patologia
20.
J Infect Dis ; 222(5): 734-745, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32563187

RESUMO

Clinical manifestations of coronavirus disease 2019 (COVID-19) vary from asymptomatic virus shedding, nonspecific pharyngitis, to pneumonia with silent hypoxia and respiratory failure. Dendritic cells and macrophages are sentinel cells for innate and adaptive immunity that affect the pathogenesis of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The interplay between SARS-CoV-2 and these cell types remains unknown. We investigated infection and host responses of monocyte-derived dendritic cells (moDCs) and macrophages (MDMs) infected by SARS-CoV-2. MoDCs and MDMs were permissive to SARS-CoV-2 infection and protein expression but did not support productive virus replication. Importantly, SARS-CoV-2 launched an attenuated interferon response in both cell types and triggered significant proinflammatory cytokine/chemokine expression in MDMs but not moDCs. Investigations suggested that this attenuated immune response to SARS-CoV-2 in moDCs was associated with viral antagonism of STAT1 phosphorylation. These findings may explain the mild and insidious course of COVID-19 until late deterioration.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Células Dendríticas/imunologia , Interferons/imunologia , Monócitos/imunologia , Pneumonia Viral/imunologia , Fator de Transcrição STAT1/antagonistas & inibidores , Imunidade Adaptativa , Animais , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , COVID-19 , Quimiocinas/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Monócitos/virologia , Pandemias , Fosforilação , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Células Vero , Replicação Viral/fisiologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA