Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(3): 1482-1488, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28005374

RESUMO

Copper-based interconnects employed in a wide range of integrated circuit (IC) products are fast approaching a dead-end due to their increasing resistivity and diminishing current carrying capacity with scaling, which severely degrades both performance and reliability. Here we demonstrate chemical vapor deposition-synthesized and intercalation-doped multilayer-graphene-nanoribbons (ML-GNRs) with better performance (more than 20% improvement in estimated delay per unit length), 25%/72% energy efficiency improvement at local/global level, and superior reliability w.r.t. Cu for the first time, for dimensions (down to 20 nm width and thickness of 12 nm) suitable for IC interconnects. This is achieved through a combination of GNR interconnect design optimization, high-quality ML-GNR synthesis with precisely controlled number of layers, and effective FeCl3 intercalation doping. We also demonstrate that our intercalation doping is stable at room temperature and that the doped ML-GNRs exhibit a unique width-dependent doping effect due to increasingly efficient FeCl3 diffusion in scaled ML-GNRs, thereby indicating that our doped ML-GNRs will outperform Cu even for sub-20 nm widths. Finally, reliability assessment conducted under accelerated stress conditions (temperature and current density) established that highly scaled intercalated ML-GNRs can carry over 2 × 108 A/cm2 of current densities, whereas Cu interconnects suffer from immediate breakdown under the same stress conditions and thereby addresses the key criterion of current carrying capacity necessary for an alternative interconnect material. Our comprehensive demonstration of highly reliable intercalation-doped ML-GNRs paves the way for graphene as the next-generation interconnect material for a variety of semiconductor technologies and applications.

2.
Phys Chem Chem Phys ; 15(25): 10446-52, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23685788

RESUMO

A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermal processing of a poly(methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in situ residual gas analysis while PMMA/Cu-foil samples were being heated, in conjunction with interrupted growth studies to reconstruct ex situ the heating process. The data clearly show that the formation of graphene occurs by vaporizing hydrocarbon molecules from PMMA, such as methane and/or methyl radicals, which act as precursors, rather than by the direct graphitization of solid-state carbon. We also found that the temperature for vaporizing hydrocarbon molecules from PMMA and the length of time the gaseous hydrocarbon atmosphere is maintained, which are dependent on both the heating temperature profile and the amount of a solid carbon feedstock, are the dominant factors that determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ∼2700 cm(2) V(-1) s(-1) at room temperature, which is superior to common graphene converted from solid carbon.

3.
Nanotechnology ; 23(43): 435603, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23059535

RESUMO

Today, state-of-the-art III-Ns technology has been focused on the growth of c-plane nitrides by metal-organic chemical vapor deposition (MOCVD) using a conventional two-step growth process. Here we show that the use of graphene as a coating layer allows the one-step growth of heteroepitaxial GaN films on sapphire in a MOCVD reactor, simplifying the GaN growth process. It is found that the graphene coating improves the wetting between GaN and sapphire, and, with as little as ~0.6 nm of graphene coating, the overgrown GaN layer on sapphire becomes continuous and flat. With increasing thickness of the graphene coating, the structural and optical properties of one-step grown GaN films gradually transition towards those of GaN films grown by a conventional two-step growth method. The InGaN/GaN multiple quantum well structure grown on a GaN/graphene/sapphire heterosystem shows a high internal quantum efficiency, allowing the use of one-step grown GaN films as 'pseudo-substrates' in optoelectronic devices. The introduction of graphene as a coating layer provides an atomic playground for metal adatoms and simplifies the III-Ns growth process, making it potentially very useful as a means to grow other heteroepitaxial films on arbitrary substrates with lattice and thermal mismatch.

4.
ACS Appl Mater Interfaces ; 11(23): 21069-21077, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31094197

RESUMO

A novel flexible transparent electrode (TE) having a trilayer-stacked geometry and high optoelectronic performance and operational stability was fabricated by the spin coating method. The trilayer was composed of an ultrathin graphene (Gr) film sandwiched between a transparent and colorless polyimide (TCPI) layer and a methanesulfonic acid (MSA)-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer containing dimethylsulfoxide and Zonyl fluorosurfactant (designated as MSA-PDZ film). The introduction of solution-processable TCPI enabled the direct formation of high-quality graphene on organic surfaces with a clean interface. Stable doping of graphene with the MSA-PDZ film enabled tuning of the inherent work function and optoelectronic properties of the PEDOT:PSS films, leading to a high figure of merit of ∼70 in the as-fabricated TEs. Particularly, from multivariate and repetitive harsh environmental tests ( T = -50 to 90 °C, over 90 RH%), the TCPI/Gr heterostructure exhibited excellent tolerance to mechanical and thermal stresses and gas barrier properties that protected the MSA-PDZ film from exposure to moisture. Owing to the synergetic effect from the TCPI/Gr/MSA-PDZ anode structure, the TCPI/Gr/MSA-PDZ-based polymer light-emitting diodes showed highly improved current and power efficiencies with maxima as high as 20.84 cd/A and 22.92 lm/W, respectively (comparable to those of indium tin oxide based PLEDs), in addition to much enhanced mechanical flexibility.

5.
Sci Rep ; 7(1): 9965, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855567

RESUMO

Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

6.
Sci Rep ; 5: 10808, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028318

RESUMO

The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement in the photocurrent along with increased sensitivity and photoresponsivity, which were attributed to the extremely low carrier trap density in the photoconductive channel.

7.
Adv Mater ; 27(23): 3492-500, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25939990

RESUMO

Highly efficient planar perovskite optoelectronic devices are realized by amine-based solvent treatment on compact TiO2 and by optimizing the morphology of the perovskite layers. Amine-based solvent treatment between the TiO2 and the perovskite layers enhances electron injection and extraction and reduces the recombination of photogenerated charges at the interface.

8.
Nanoscale ; 6(8): 4379-86, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24632835

RESUMO

We show that acetone-derived graphene coating can effectively enhance the corrosion efficiency of copper (Cu) in a seawater environment (0.5-0.6 M (∼3.0-3.5%) sodium chloride). By applying a drop of acetone (∼20 µl cm(-2)) on Cu surfaces, rapid thermal annealing allows the facile and rapid synthesis of graphene films on Cu surfaces with a monolayer coverage of almost close to ∼100%. Under optimal growth conditions, acetone-derived graphene is found to have a relatively high crystallinity, comparable to common graphene grown by chemical vapor deposition. The resulting graphene-coated Cu surface exhibits 37.5 times higher corrosion resistance as compared to that of mechanically polished Cu. Further, investigation on the role of graphene coating on Cu surfaces suggests that the outstanding corrosion inhibition efficiency (IE) of 97.4% is obtained by protecting the underlying Cu against the penetration of both dissolved oxygen and chlorine ions, thanks to the closely spaced atomic structure of the graphene sheets. The increase of graphene coating thickness results in the enhancement of the overall corrosion IE up to ∼99%, which can be attributed to the effective blocking of the ionic diffusion process via grain boundaries. Overall, our results suggest that the acetone-derived graphene film can effectively serve as a corrosion-inhibiting coating in the seawater level and that it may have a promising role to play for potential offshore coating.

9.
Nat Commun ; 5: 3383, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24577159

RESUMO

Graphene oxide potentially has multiple applications and is typically prepared by solution-based chemical means. To date, the synthesis of a monolithic form of graphene oxide that is crucial to the precision assembly of graphene-based devices has not been achieved. Here we report the physical approach to produce monolithic graphene oxide sheets on copper foil using solid carbon, with tunable oxygen-to-carbon composition. Experimental and theoretical studies show that the copper foil provides an effective pathway for carbon diffusion, trapping the oxygen species dissolved in copper and enabling the formation of monolithic graphene oxide sheets. Unlike chemically derived graphene oxide, the as-synthesized graphene oxide sheets are electrically active, and the oxygen-to-carbon composition can be tuned during the synthesis process. As a result, the resulting graphene oxide sheets exhibit tunable bandgap energy and electronic properties. Our solution-free, physical approach may provide a path to a new class of monolithic, two-dimensional chemically modified carbon sheets.

10.
ACS Appl Mater Interfaces ; 4(3): 1777-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22397526

RESUMO

Few-layer graphene films with a controllable thickness were grown on a nickel surface by rapid thermal annealing (RTA) under vacuum. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2-3 nm) carbon- and oxygen-containing compounds on a nickel surface; thus, the high-temperature annealing of the nickel samples without the introduction of intentional carbon-containing precursors results in the formation of graphene films. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time, and the resulting films have a limited thickness (<2 nm), even for an extended RTA time. The transferred films have a low sheet resistance of ~0.9 ± 0.4 kΩ/sq, with ~94% ± 2% optical transparency, making them useful for applications as flexible transparent conductors.

11.
Nat Commun ; 3: 645, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273683

RESUMO

Large-area graphene films are best synthesized via chemical vapour and/or solid deposition methods at elevated temperatures (~1,000 °C) on polycrystalline metal surfaces and later transferred onto other substrates for device applications. Here we report a new method for the synthesis of graphene films directly on SiO(2)/Si substrates, even plastics and glass at close to room temperature (25-160 °C). In contrast to other approaches, where graphene is deposited on top of a metal substrate, our method invokes diffusion of carbon through a diffusion couple made up of carbon-nickel/substrate to form graphene underneath the nickel film at the nickel-substrate interface. The resulting graphene layers exhibit tunable structural and optoelectronic properties by nickel grain boundary engineering and show micrometre-sized grains on SiO(2) surfaces and nanometre-sized grains on plastic and glass surfaces. The ability to synthesize graphene directly on non-conducting substrates at low temperatures opens up new possibilities for the fabrication of multiple nanoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA