Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 17(12): e1009969, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962934

RESUMO

Teleosts live in aquatic habitats, where they encounter ionic and acid-base fluctuations as well as infectious pathogens. To protect from these external challenges, the teleost epidermis is composed of living cells, including keratinocytes and ionocytes that maintain body fluid ionic homeostasis, and mucous cells that secret mucus. While ionocyte progenitors are known to be specified by Delta-Notch-mediated lateral inhibition during late gastrulation and early segmentation, it remains unclear how epidermal mucous cells (EMCs) are differentiated and maintained. Here, we show that Delta/Jagged-mediated activation of Notch signaling induces the differentiation of agr2-positive (agr2+) EMCs in zebrafish embryos during segmentation. We demonstrated that agr2+ EMCs contain cytoplasmic secretory granules and express muc5.1 and muc5.2. Reductions in agr2+ EMC number were observed in mib mutants and notch3 MOs-injected notch1a mutants, while increases in agr2+ cell number were detected in notch1a- and X-Su(H)/ANK-overexpressing embryos. Treatment with γ-secretase inhibitors further revealed that Notch signaling is required during bud to 15 hpf for the differentiation of agr2+ EMCs. Increased agr2+ EMC numbers were also observed in jag1a-, jag1b-, jag2a- and dlc-overexpressing, but not jag2b-overexpressing embryos. Meanwhile, reductions in agr2+ EMC numbers were detected in jag1a morphants, jag1b mutants, jag2a mutants and dlc morphants, but not jag2b mutants. Reduced numbers of pvalb8-positive epidermal cells were also observed in mib or jag2a mutants and jag1a or jag1b morphants, while increased pvalb8-positive epidermal cell numbers were detected in notch1a-overexpressing, but not dlc-overexpressing embryos. BrdU labeling further revealed that the agr2+ EMC population is maintained by proliferation. Cell lineage experiments showed that agr2+ EMCs are derived from the same ectodermal precursors as keratinocytes or ionocytes. Together, our results indicate that specification of agr2+ EMCs in zebrafish embryos is induced by DeltaC/Jagged-dependent activation of Notch1a/3 signaling, and the cell population is maintained by proliferation.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Homeodomínio/genética , Proteína Jagged-1/genética , Proteína Jagged-2/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/genética , Proteínas de Peixe-Zebra/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Ectoderma/crescimento & desenvolvimento , Epiderme/crescimento & desenvolvimento , Queratinócitos/citologia , Queratinócitos/metabolismo , Muco/metabolismo , Proteínas Mutantes/genética , Receptores Notch/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
J Headache Pain ; 23(1): 39, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350973

RESUMO

BACKGROUND: Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. OBJECTIVES: To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. METHODS: We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. RESULTS: We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. CONCLUSIONS: Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs.


Assuntos
Síndrome das Pernas Inquietas , Animais , Estudo de Associação Genômica Ampla , Humanos , Síndrome das Pernas Inquietas/complicações , Síndrome das Pernas Inquietas/genética , Peixe-Zebra/genética
3.
Hum Mol Genet ; 25(8): 1637-47, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908610

RESUMO

Familial exudative vitreoretinopathy (FEVR) belongs to a group of genetically and clinically heterogeneous disorders in retinal vascular development. To date, in approximately 50% of patients with FEVR, pathogenic mutations have been detected in FZD4, LRP5, TSPAN12, NDP and ZNF408. In this study, we identified two heterozygous frameshift mutations in RCBTB1 from three Taiwanese cases through exome sequencing. In patient-derived lymphoblastoid cell lines (LCLs), the protein level of RCBTB1 is approximately half that of unaffected control LCLs, which is indicative of a haploinsufficiency mechanism. By employing transient transfection and reporter assays for the transcriptional activity of ß-catenin, we demonstrated that RCBTB1 participates in the Norrin/FZD4 signaling pathway and that knockdown of RCBTB1 by shRNA significantly reduced nuclear accumulation of ß-catenin under Norrin and Wnt3a treatments. Furthermore, transgenic fli1:EGFP zebrafish with rcbtb1 knockdown exhibited anomalies in intersegmental and intraocular vessels. These results strongly support that reduced RCBTB1 expression may lead to defects in angiogenesis through the Norrin-dependent Wnt pathway, and that RCBTB1 is a putative genetic cause of vitreoretinopathies.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Haploinsuficiência , Neovascularização Fisiológica , Doenças Retinianas/genética , Telangiectasia Retiniana/genética , Análise de Sequência de DNA/métodos , Linhagem Celular , Exoma , Oftalmopatias Hereditárias , Proteínas do Olho/metabolismo , Vitreorretinopatias Exsudativas Familiares , Feminino , Mutação da Fase de Leitura , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Taiwan , Via de Sinalização Wnt
4.
Eur J Neurosci ; 32(5): 725-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20673311

RESUMO

Astrocytes function as spatial K(+) buffers by expressing a rich repertoire of K(+) channels. Earlier studies suggest that acid-sensitive tandem-pore K(+) channels, mainly TWIK-related acid-sensitive K(+) (TASK) channels, mediate part of the passive astroglial membrane conductance. Here, using a combination of electrophysiology and pharmacology, we investigated the presence of TASK-like conductance in hippocampal astrocytes of rat brain slices. Extracellular pH shifts to below 7.4 (or above 7.4) induced a prominent inward (or outward) current in astrocytes in the presence of tetrodotoxin, a Na(+) channel blocker, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate, a co-transporter blocker. The pH-sensitive current was insensitive to quinine, a potent blocker of tandem-pore K(+) channels including TWIK-1 and TREK-1 channels. Voltage-clamp analysis revealed that the pH-sensitive current exhibited weak outward rectification with a reversal potential of -112 mV, close to the Nernst equilibrium potential for K(+) . Furthermore, the current-voltage relationship was well fitted with the Goldman-Hodgkin-Katz current equation for the classical open-rectifier 'leak' K(+) channel. The pH-sensitive K(+) current was potentiated by TASK channel modulators such as the volatile anesthetic isoflurane but depressed by the local anesthetic bupivacaine. However, unlike TASK channels, the pH-sensitive current was insensitive to Ba(2+) and quinine. Thus, the molecular identity of the pH-sensitive leak K(+) channel is unlikely to be attributable to TASK channels. Taken together, our results suggest a novel yet unknown leak K(+) channel underlying the pH- and anesthetic-sensitive background conductance in hippocampal astrocytes.


Assuntos
Astrócitos/fisiologia , Hipocampo/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/análogos & derivados , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Bário/farmacologia , Bupivacaína/farmacologia , Hipocampo/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Isoflurano/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp/métodos , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Quinina/farmacologia , Ratos , Ratos Sprague-Dawley , Tetrodotoxina/farmacologia
5.
Sci Rep ; 10(1): 14213, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848183

RESUMO

Mutations of the Gon4l/udu gene in different organisms give rise to diverse phenotypes. Although the effects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two-hybrid (Y2H) screening to identify interacting proteins in zebrafish and mouse systems, confirmed the interactions by co-immunoprecipitation assay, and found four novel Gon4l-interacting proteins: BRCA1 associated protein-1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu-interacting proteins-as found in this study, in previous reports, and in online resources-were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identified include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these findings indicate novel mechanisms of Gon4l/Udu in regulating CpG methylation, histone expression/modification, DNA repair/genomic stability, and RNA binding/processing/export.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Ligação de DNA Eritroide Específicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina Tiolesterase/metabolismo , Peixe-Zebra
6.
Oncotarget ; 8(45): 78948-78964, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108278

RESUMO

Nasopharyngeal carcinoma (NPC) is a serious health problem in China and Southeast Asia. Relapse is the major cause of mortality, but mechanisms of relapse are mysterious. Epstein-Barr virus (EBV) reactivation and host genomic instability (GI) have correlated with NPC development. Previously, we reported that lytic early genes DNase and BALF3 induce genetic alterations and progressive malignancy in NPC cells, implying lytic proteins may be required for NPC relapse. In this study, we show that immediate early gene BRLF1 induces chromosome mis-segregation and genomic instability in the NPC cells. Similar phenomenon was also demonstrated in 293 and zebrafish embryonic cells. BRLF1 nuclear localization signal (NLS) mutant still induced genomic instability and inhibitor experiments revealed that BRLF1 interferes with chromosome segregation and induces genomic instability by activating Erk signaling. Furthermore, the chromosome aberrations and tumorigenic features of NPC cells were significantly increased with the rounds of BRLF1 expression, and these cells developed into larger tumor nodules in mice. Therefore, BRLF1 may be the important factor contributing to NPC relapse and targeting BRLF1 may benefit patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA