Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720361

RESUMO

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Assuntos
Cardiotoxicidade , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doxorrubicina/efeitos adversos , Cardiotoxicidade/etiologia , Animais , Disbiose , Transplante de Microbiota Fecal
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338945

RESUMO

In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.


Assuntos
Histonas , Árvores , Árvores/fisiologia , Estações do Ano , Histonas/genética , Metilação de DNA , Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891958

RESUMO

The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.


Assuntos
Camellia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Sementes , Camellia/genética , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Genoma de Planta , Estudo de Associação Genômica Ampla
4.
J Cell Mol Med ; 25(9): 4373-4386, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33783966

RESUMO

Inflammation and endothelial dysfunction are important participants and drivers in atherosclerosis. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation and the resulting pyroptosis are involved in the initiation and vicious circle of chronic inflammation, thus playing an indispensable role in atherosclerosis. Accordingly, blocking the activation of NLRP3 inflammasome may be a promising treatment strategy to blunt the progression of atherosclerosis. In this study, it was demonstrated that miR-302c-3p exerted anti-pyroptosis effects by directly targeting NLRP3 in vivo and in vitro. In brief, the expression of miR-302c-3p was down-regulated whereas the expression of NLRP3 was up-regulated in human plaques and in vitro pyroptosis model of endothelial cells. Overexpression of miR-302c-3p suppressed endothelial cell pyroptosis by targeting specific sites of NLRP3. By comparison, down-regulation of endogenous miR-302c-3p led to the opposite results, which were reversed by silencing the expression of NLRP3. Finally, the up-regulation of miR-302c-3p inhibited the inflammation and pyroptosis of atherosclerosis mouse model. In conclusion, miR-302c-3p may be a powerful and attractive target for suppressing endothelial inflammation and pyroptosis, providing a novel strategy for preventing or alleviating the progression of atherosclerosis.


Assuntos
Células Endoteliais/patologia , Regulação da Expressão Gênica , Inflamassomos , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose , Animais , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Int J Cancer ; 139(9): 2106-15, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27356906

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is an effective therapy for children with high-risk acute lymphoblastic leukemia (ALL). Human leukocyte antigen (HLA)-haploidentical HSCT (haplo-HSCT) or umbilical cord blood transplantation (UCBT) are both important alternative sources of stem cells for those without an HLA-identical sibling donor or unrelated matched donor. We aimed to compare the therapeutic effects of single UCBT and unmanipulated haplo-HSCT in high-risk ALL children (n = 129). Hematopoietic recovery was significantly faster in haplo-HSCT recipients than in UCBT recipients. The 2-year cumulative incidences of relapse in the haplo-HSCT and UCBT groups were 16.1% and 24.1%, respectively (p = 0.169). The 2-year cumulative incidences of non-relapse mortality in the haplo-HSCT and UCBT groups were 12.8% and 18.8%, respectively (p = 0.277). The 2-year probabilities of overall survival in the haplo-HSCT and UCBT groups were 82.0% and 69.6%, respectively (p = 0.071), and the 2-year probability of disease-free survival in the haplo-HSCT group was higher than in the UCBT group (71.0% vs. 57.2%, p = 0.040). However, several variables (such as leukocyte count and cytogenetics at diagnosis) were different between the groups, and a possible center effect should also be considered. In addition, only mild and moderate chronic graft-versus-host disease (GVHD) was associated with significantly improved survival compared to those without chronic GVHD in multivariate analysis. Thus, our results show that both unmanipulated haplo-HSCT and UCBT are valid for high-risk ALL children lacking a HLA matched donor, and both strategies expand the donor pool for children in need.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Doença Enxerto-Hospedeiro/epidemiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Recidiva Local de Neoplasia/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Recidiva , Análise de Sobrevida , Resultado do Tratamento
7.
Ann Hematol ; 94(6): 929-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25572170

RESUMO

The Wilms' tumor 1 (WT1) expression has been recognized in a substantial number of acute myeloid leukemia (AML) patients. Some studies indicated the association of diagnosed WT1 higher expression (WT1(H)) and poor outcome in the AML patients, while other studies had different opinions. Therefore, we performed a meta-analysis to evaluate the controversial prognostic significance of diagnosed WT1(H) in AML. Eligible studies were identified from several databases including PubMed, Embase, Web of Science, and the Cochrane Library (up to September 2014). The primary end point was overall survival (OS) and disease-free survival (DFS) was chosen as secondary end point. If possible, we would pool estimate effects (hazard ratio [HR] with 95 % confidence interval [CI]) of outcomes in both fixed and random effects models. Eleven studies, covering 1497 AML patients, were included in this meta-analysis. Pooled HRs indicated that diagnosed WT1(H) had a poor impact on the survival of AML patients (HR for OS, 1.37; HR for DFS, 1.38). Furthermore, diagnosed WT1(H) appeared to be an adverse prognostic indicator in adult AML (HR for OS, 1.43; HR for DFS, 1.41) and non-promyelocytic AML (non-M3 AML) (HR for OS, 1.46; HR for DFS, 1.41). Diagnosed WT1(H) had slightly but significantly poor prognostic impact on OS and DFS of patients with AML in total population and some specific subgroups.


Assuntos
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Proteínas WT1/biossíntese , Biomarcadores/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Prognóstico , Proteínas WT1/genética
8.
Phys Chem Chem Phys ; 17(21): 13813-20, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25803480

RESUMO

Vertically aligned ZnO/MgO coaxial nanowire (NW) arrays were prepared on sapphire substrates by metal-organic chemical vapor deposition combined with a sputtering system. We present a comparative investigation of the morphological and optical properties of the produced heterostructures with different MgO layer thicknesses. Photoluminescence measurements showed that the optical performances of ZnO/MgO coaxial NWs were strongly dependent on the MgO layer thickness. The intensity of deep-level emission (DLE) decreased monotonously with the increase of MgO thickness, while the enhancement of ultraviolet (UV) emission showed a critical thickness of 15 nm, achieving a maximum intensity ratio (∼226) of IUV/IDLE at the same time. The significantly improved exciton emission efficiency of the coaxial NW structures allows us to study the surface passivation effect, photogenerated carrier confinement and transfer in terms of energy band theory. More importantly, we achieved an ultralow threshold (4.5 mA, 0.58 A cm(-2)) electrically driven UV lasing action based on the ZnO/MgO NW structures by constructing an Au/MgO/ZnO metal/insulator/semiconductor diode, and the continuous-current-driven diode shows a good temperature tolerance. The results obtained on the unique optical properties of ZnO/MgO coaxial NWs shed light on the design and development of ZnO-based UV laser diodes assembled with nanoscale building blocks.

9.
Ecotoxicology ; 24(7-8): 1765-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25952560

RESUMO

With the destruction of the ecological environment, shrimp cultivation in China has been seriously affected by outbreaks of infectious diseases. Rab, which belong to small GTPase Ras superfamily, can regulate multiple steps in eukaryotic vesicle trafficking including vesicle budding, vesicle tethering, and membrane fusion. Knowledge of Rab in shrimp is essential to understanding regulation and detoxification mechanisms of environmental stress. In this study, we analyzed the functions of Rab from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNA of Rab was obtained, which was 751 bp long, with open reading frame encoding 206 amino acids. In this study, for the first time, the gene expression of Rab of L. vannamei was analyzed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that Rab is sensitive and involved in bacteria, pH, and Cd stress responses and Rab is more sensitive to bacteria than other stresses. Therefore we infer that Rab may have relationship with the anti-stress mechanism induced by environment stress in shrimp and Rab could be used as critical biomarkers for environmental quality assessment.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Técnicas de Hibridização Subtrativa , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 40(4): 704-9, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-26137694

RESUMO

A simple and cost-effective indirect competitive enzyme-linked immune sorbent assay (ic-ELISA) was developed to rapidly screen the content of aflatoxin B1 (AFB1) in lotus seeds, and the results were confirmed by ultra-fast liquid chromatography-tandem mass spectrometry( UFLC-MS/MS). Matrix-matched calibration expressed a good linearity ranging from 0. 171 to 7. 25 µg · L(-1) for AFB, with R2 > 0.978. The medium inhibitory concentration( IC50 ) for AFB1 was 1.29 µg · L(-1), the recovery for AFB1 was 74.73% to 126.9% with RSD < 5%, and the limit of detection (IC10) was 0.128 µg · L(-1). The developed ic-ELSIA method was applied to rapid analysis of AFB, in 20 lotus seeds samples and the results indicated that the contents of AFB, in samples 1-15 were in the range of 1. 19- 115. 3 µg · kg(-1) and in 40% of the samples exceeded the legal limit(5 µg · kg(-1)), while the contamination rate of AFB, in samples 16-20 was 40%. Pearson correlation coefficient(r) reached 0.997 for AFB1 content in the samples detected by ic-ELSIA and UFLC-MS/MS methods. The results proved that the developed ic-ELISA method is simple, sensitive and reliable, and can be used for rapid and high-throughput screening of AFB1 in lotus seeds


Assuntos
Aflatoxina B1/análise , Ensaio de Imunoadsorção Enzimática/métodos , Lotus/química , Sementes/química , Contaminação de Medicamentos
11.
Tumour Biol ; 35(6): 5619-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563337

RESUMO

We studied the effects of all-trans-retinoic acid (ATRA), C-phycocyanin (C-PC), or ATRA+C-PC on the growth of cervical cells (HeLa cells), cell cycle distribution, and apoptosis. The anticancer mechanism of the drug combination was revealed. MTT assay was adopted to determine the effects of C-PC and ATRA on the growth of HeLa cells. The expression quantities of cyclin-dependent kinase (CDK) 4, cyclin D1, Bcl-2, caspase-3, and CD59 were determined by in situ hybridization, immunofluorescence, immunohistochemistry staining, Western blot, and RT-PCR. TUNEL assay was adopted to determine the cellular apoptosis levels. Both C-PC and ATRA could inhibit the growth of HeLa cells, and the combination of ATRA+C-PC functioned cooperatively to induce apoptosis in HeLa cells. The dosage of ATRA was reduced when it cooperated with C-PC to reduce the toxicity. ATRA treated with C-PC could induce more cell cycle arrests than the single drug used by decrease in cyclin D1 and CDK4 expression. The combination of the two drugs could upregulate caspase-3 and downregulate the Bcl-2 gene and induce cell apoptosis. Moreover, the combination therapy has an important immunological significance in decreased expression of the CD59 protein. Singly, C-PC or ATRA could inhibit the growth of HeLa cells, and the effects of treatment were further enhanced in the combination group. In combination with C-PC, the dosage of ATRA was effectively reduced. The C-PC + ATRA combination might take effect by inhibiting the progress of the cell cycle, inducing cell apoptosis and promoting complement-mediated cytolysis.


Assuntos
Antineoplásicos/administração & dosagem , Ficocianina/administração & dosagem , Tretinoína/administração & dosagem , Apoptose/efeitos dos fármacos , Antígenos CD59/análise , Caspase 3/análise , Proliferação de Células/efeitos dos fármacos , Ciclina D1/análise , Quinase 4 Dependente de Ciclina/análise , Imunofluorescência , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/análise
12.
Comb Chem High Throughput Screen ; 27(7): 1056-1070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305398

RESUMO

AIM: To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOX-induced cardiotoxicity for further study. METHODS: The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing. RESULTS: Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing. CONCLUSION: mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).


Assuntos
Doxorrubicina , Exossomos , Células-Tronco Mesenquimais , Miócitos Cardíacos , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Doxorrubicina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Animais , Perfilação da Expressão Gênica , Ratos , Células Cultivadas
13.
J Inflamm Res ; 17: 669-685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328563

RESUMO

Purpose: Doxorubicin-induced cardiotoxicity (DIC) is a severe side reaction in cancer chemotherapy that greatly impacts the well-being of cancer patients. Currently, there is still an insufficiency of effective and reliable biomarkers in the field of clinical practice for the early detection of DIC. This study aimed to determine and validate the potential diagnostic and predictive values of critical signatures in DIC. Methods: We obtained high-throughput sequencing data from the GEO database and performed data analysis and visualization using R software, GO, KEGG and Cytoscape. Machine learning methods and weighted gene coexpression network (WGCNA) were used to identify key genes for diagnostic model construction. Receiver operating characteristic (ROC) analysis and a nomogram were used to assess their diagnostic values. A multiregulatory network was built to reveal the possible regulatory relationships of critical signatures. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) analysis was used to investigate differential immune cell infiltration. Additionally, a cell and animal model were constructed to investigate the relationship between the identified genes and DIC. Results: Among the 3713 differentially expressed genes, three key genes (CSGALNACT1, ZNF296 and FANCB) were identified. A nomogram and ROC curves based on three key genes showed excellent diagnostic predictive performance. The regulatory network analysis showed that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulated three key genes. An analysis of immune cell infiltration indicated that many immune cells (activated NK cells, M0 macrophages, activated dendritic cells and neutrophils) might be related to the progression of DIC. Furthermore, there may be various degrees of correlation between the three critical signatures and immune cells. RT‒qPCR demonstrated that the mRNA expression of CSGALNACT1 and ZNF296 was significantly upregulated, while FANCB was significantly downregulated in DOX-treated cardiomyocytes in vitro and in vivo. Conclusion: Our study suggested that the differential expression of CSGALNACT1, ZNF296 and FANCB is associated with cardiotoxicity and is also involved in immune cell infiltration in DIC. They might be potential biomarkers for the early occurrence of DIC.

14.
Front Immunol ; 15: 1264856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455049

RESUMO

Background: Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods: Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results: A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1ß, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions: This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.


Assuntos
COVID-19 , Pericardite , Humanos , Vacinas contra COVID-19 , COVID-19/genética , Biologia Computacional , Biologia de Sistemas , Pericardite/genética
15.
Fish Shellfish Immunol ; 35(5): 1466-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012751

RESUMO

The tumor suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. In the present study, the cDNA of p53 from the orange-spotted grouper (Epinephelus coioides) (Ec-p53) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Ec-p53 was of 1921 bp, including an open reading frame (ORF) of 1143 bp encoding a polypeptide of 380 amino acids with predicted molecular weight of 42.3 kDa and theoretical isoelectric point of 7.0. Quantitative real-time PCR (qRT-PCR) assays revealed that Ec-p53 was ubiquitously expressed in all the examined tissues but with high levels in intestine and liver of the orange-spotted grouper. In addition, we measured the DNA damage and apoptosis in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in grouper in conditions where the temperature was 15 ± 0.5 °C. Furthermore, qRT-PCR and western blot confirmed that low temperature stress induced upregulation of Ec-p53 in the mRNA and protein levels. These results suggest that low temperature-induced oxidative stress may cause DNA damage or apoptosis, and cooperatively stimulate the expression of Ec-p53, which plays a critical role in immune defense and antioxidant responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Perciformes/genética , Estresse Fisiológico/fisiologia , Temperatura , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Análise de Variância , Animais , Apoptose/fisiologia , Sequência de Bases , Western Blotting/veterinária , Clonagem Molecular , Ensaio Cometa/veterinária , Primers do DNA/genética , DNA Complementar/genética , Escherichia coli , Regulação da Expressão Gênica/genética , Hemócitos/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária
16.
Sensors (Basel) ; 13(6): 7121-39, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23722826

RESUMO

A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

17.
J Huazhong Univ Sci Technolog Med Sci ; 33(5): 650-655, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24142715

RESUMO

As new-type powered sheaths are expensive and unavailable, the standard lead extraction techniques remain the mainstay in clinical applications in many countries. The purpose of this study was to re-evaluate the clinical application of the standard lead extraction techniques and equipment, and make some procedural modifications and innovations. In our center, between January 2006 and May 2012, 229 patients (median, 66 years) who underwent lead extraction due to infection and lead malfunction were registered and followed up prospectively with respect to clinical features, reasons for lead extraction, technical characteristics, and clinical prognosis. A total of 440 leads had to be extracted transvenously by using special tools from 229 patients (male, 72.1%). Vegetations ≥1 cm were detected in six patients. Locking Stylets were applied for 398 (90.5%) leads. Telescoping dilator polypropylene sheaths and counter traction technique were used for 202 (45.9%) leads due to lead adhesion, and the mean implant duration of the 202 leads was longer than the other 238 leads (48.9±22.6 vs. 26.6±17.8 months; P <0.01). In addition, modified isolation and snare techniques were used for 56 leads (12.7%). Minor and major procedure-related complications occurred in three (1.3%) and four (1.7%) cases respectively, including one death (0.4%). Severe lead residue occurred in one case. Complete procedural success rate was 96.1% (423/440), and clinical success rate was 98.9% (435/440). The median follow-up period was 18 (1-76) months. No infection- and procedure-related death occurred in our series. Our data demonstrated that high clinical success rate of transvenous lead extraction can be guaranteed by making full use of the standard lead extraction techniques and equipment with individualized modifications.


Assuntos
Remoção de Dispositivo/métodos , Marca-Passo Artificial , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Eletrodos Implantados , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/cirurgia , Resultado do Tratamento , Adulto Jovem
18.
Life Sci ; 330: 122006, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544376

RESUMO

Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.


Assuntos
Aterosclerose , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética
19.
Clin Chim Acta ; 551: 117613, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871762

RESUMO

Myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) is an important subtype of myocardial infarction. Although comprising less than 50% stenosis in the main epicardial coronary arteries, it constitutes a severe health risk. A variety of approaches have been recommended, but definitive diagnosis remains elusive. In addition, the lack of a comprehensive understanding of underlying pathophysiology makes clinical management difficult and unpredictable. This review highlights ongoing efforts to identify relevant biomarkers in MINOCA to improve diagnosis, individualize treatment and better predict outcomes.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , MINOCA , Angiografia Coronária , Fatores de Risco , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/terapia , Infarto do Miocárdio/diagnóstico , Biomarcadores , Vasos Coronários
20.
J Cell Biochem ; 113(12): 3810-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22821302

RESUMO

Some short peptides discovered by phage display are found to be able to inhibit cancer growth and induce cancer cell apoptosis. In this study, a novel cancer-targeting short peptide which was composed of 22 amino acids (ACHWPWCHGWHSACDLPMHPMC, abbreviated as sp22) and specifically bound to human CD59 was screened from a M13 phage display library so as to counteract tumor immune escape activity. The mechanism of exogenous sp22 peptide in inducing apoptosis of MCF-7 cells was investigated. The results suggested that sp22 could lower CD59 expression level, downregulate Bcl-2 expression, activate Fas and caspase-3, and finally increase apoptotic cell numbers of MCF-7 cells. However, sp22 had no obvious influence on normal human embryonic lung cells. In addition, the effects of endogenous sp22 gene on CD59 expression and NKM cell apoptosis were explored using the recombinant plasmid sp22-PIRES. It showed that sp22 gene was efficiently expressed in transfected NKM cells. Compared with normal NKM cells, NKM cells transfected with sp22 displayed reduced mRNA and protein expression levels of CD59, increased sensitivity to complement-mediated cytolysis, decreased cell survival ratio, changes of the expression of apoptosis associated proteins, increased number of apoptotic cells and the appearance of apoptotic morphology. The results suggested that sp22 protein could bind to CD59 and inhibit the expression of CD59. The cytolytic activity of complement on tumor cells strengthened and apoptosis signal was stepwise transferred which might be a potential way to kill tumor cells.


Assuntos
Apoptose , Antígenos CD59/metabolismo , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Bacteriófago M13/genética , Sequência de Bases , Biomarcadores Tumorais , Antígenos CD59/efeitos dos fármacos , Células CHO , Caspase 3/genética , Caspase 3/metabolismo , Domínio Catalítico , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Ativação do Complemento , Cricetinae , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , Humanos , Marcação In Situ das Extremidades Cortadas , Células MCF-7 , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Evasão Tumoral , Receptor fas/genética , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA