Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 42(5): 448-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22897767

RESUMO

Gene therapy provides a novel strategy and a new hope for patients with cancer. Unfortunately, the specifics of the delivery systems or the promoters have not achieved the specified efficacy so far, and the perfection of either system will be extremely difficult. In this study, we introduce a simple concept that a combination of a partially specific delivery system and a partially specific promoter activity may achieve a more specific effect on transgenic expression in target cells. The first section describes tumor-related transcription factors that were assayed in tumors or rapidly proliferating cells to determine their activities. The activities of nuclear factor (NF)-κB, CREB, and HIF-1 were higher, and three copies of each response element were used to construct a transcription factor-based synthetic promoter (TSP). The results showed that the expression of the TSP was active and partially specific to cell types. As described in the second section, the multifunctional peptide RGD-4C-HA was designed to absorb polyethyleneimine (PEI) molecules, and this complex was targeted to integrin αvß3 on B16F10 cells. The results indicated that RGD-4C-HA could associate with PEI to mediate specific targeting in vitro. Finally, the combination of the PEI-peptide complex and TSP could enhance the specifically transgenic expression in B16F10 cells. This strategy has been proven to work in vitro and might potentially be used for specific gene therapy in vivo.


Assuntos
Expressão Gênica , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Proteínas de Neoplasias/genética , Elementos de Resposta , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Terapia Genética , Vetores Genéticos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/genética , NF-kappa B/química , NF-kappa B/genética , Proteínas de Neoplasias/química , Neoplasias/patologia , Neoplasias/terapia , Oligopeptídeos/genética , Polietilenoimina/química , Transfecção
2.
Protein Eng Des Sel ; 28(11): 519-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319005

RESUMO

Enzyme replacement therapy (ERT) is an effective treatment for many patients with lysosomal storage disorders caused by deficiency in enzymes involved in cell metabolism. However, immune responses that develop against the administered enzyme in some patients can hinder therapeutic efficacy and cause serious side effects. Here we investigated the feasibility of a general approach to decrease ERT immunogenicity by altering the specificity of a normal endogenous enzyme to compensate for a defective enzyme. We sought to identify human ß-glucuronidase variants that display α-iduronidase activity, which is defective in mucopolysaccharidosis (MPS) type I patients. A human ß-glucuronidase library was screened by the Enzyme Cleavable Surface-Tethered All-purpose Screen sYstem to isolate variants that exhibited 100-290-fold greater activity against the α-iduronidase substrate 4-methylumbelliferyl α-l-iduronide and 7900-24 500-fold enzymatic specificity shift when compared with wild-type ß-glucuronidase. In vitro treatment of MPS I cells with the ß-glucuronidase variants significantly restored lysosome appearance similar to treatment with α-iduronidase. Our study suggests that ß-glucuronidase variants can be isolated to display α-iduronidase activity and produce significant phenotype improvement of MPS I cells. This strategy may represent a possible approach to produce enzymes that display therapeutic benefits with potentially less immunogenicity.


Assuntos
Glucuronidase/genética , Glucuronidase/metabolismo , Iduronidase/deficiência , Iduronidase/metabolismo , Sequência de Aminoácidos , Terapia de Reposição de Enzimas/efeitos adversos , Terapia de Reposição de Enzimas/métodos , Glucuronidase/química , Glucuronidase/imunologia , Células HEK293 , Humanos , Modelos Moleculares , Mucopolissacaridoses , Engenharia de Proteínas
3.
Protein Eng Des Sel ; 25(7): 367-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22691701

RESUMO

We describe an adjustable membrane-tethered/soluble protein screening methodology termed ECSTASY (enzyme cleavable surface tethered all-purpose screening system) which combines the power of high-throughput fluorescence-activated cell sorting of membrane-tethered proteins with the flexibility of soluble assays for isolation of improved mammalian recombinant proteins. In this approach, retroviral transduction is employed to stably tether a library of protein variants on the surface of mammalian cells via a glycosyl phosphatidylinositol anchor. High-throughput fluorescence-activated cell sorting is used to array cells expressing properly folded and/or active protein variants on their surface into microtiter culture plates. After culture to expand individual clones, treatment of cells with phosphatidylinositol-phospholipase C releases soluble protein variants for multiplex measurement of protein concentration, activity and/or function. We utilized ECSTASY to rapidly generate human ß-glucuronidase variants for cancer therapy by antibody-directed enzyme prodrug therapy with up to 30-fold greater potency to catalyze the hydrolysis of the clinically relevant camptothecin anti-cancer prodrug as compared with wild-type human ß-glucuronidase. A variety of recombinant proteins could be adjustably displayed on fibroblasts, suggesting that ECSTASY represents a general, simple and versatile methodology for high-throughput screening to accelerate sequence activity-based evolution of mammalian proteins.


Assuntos
Proteínas Ligadas por GPI/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Células 3T3 , Animais , Linhagem Celular , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA