Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 143(9): 3359-3372, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629832

RESUMO

The active site of methanol dehydrogenase (MDH) contains a rare disulfide bridge between adjacent cysteine residues. As a vicinal disulfide, the structure is highly strained, suggesting it might work together with the pyrroloquinoline quinone (PQQ) prosthetic group and the Ca2+ ion in the catalytic turnover during methanol (CH3OH) oxidation. We purify MDH from Methylococcus capsulatus (Bath) with the disulfide bridge broken into two thiols. Spectroscopic and high-resolution X-ray crystallographic studies of this form of MDH indicate that the disulfide bridge is redox active. We observe an internal redox process within the holo-MDH that produces a disulfide radical anion concomitant with a companion PQQ radical, as evidenced by an optical absorption at 408 nm and a magnetically dipolar-coupled biradical in the EPR spectrum. These observations are corroborated by electron-density changes between the two cysteine sulfurs of the disulfide bridge as well as between the bound Ca2+ ion and the O5-C5 bond of the PQQ in the high-resolution X-ray structure. On the basis of these findings, we propose a mechanism for the controlled redistribution of the two electrons during hydride transfer from the CH3OH in the alcohol oxidation without formation of the reduced PQQ ethenediol, a biradical mechanism that allows for possible recovery of the hydride for transfer to an external NAD+ oxidant in the regeneration of the PQQ cofactor for multiple catalytic turnovers. In support of this mechanism, a steady-state level of the disulfide radical anion is observed during turnover of the MDH in the presence of CH3OH and NAD+.

2.
Asian Pac J Allergy Immunol ; 36(2): 126-135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28802032

RESUMO

BACKGROUND: AnkGAG1D4 is an artificial ankyrin repeat protein which recognizes the capsid protein (CA) of the human immunodeficiency virus type 1 (HIV-1) and exhibits the intracellular antiviral activity on the viral assembly process. Improving the binding affinity of AnkGAG1D4 would potentially enhance the AnkGAG1D4-mediated antiviral activity. OBJECTIVE: To augment the affinity of AnkGAG1D4 scaffold towards its CA target, through computational predictions and experimental designs. METHOD: Three dimensional structure of the binary complex formed by AnkGAG1D4 docked to the CA was used as a model for van der Waals (vdW) binding energy calculation. The results generated a simple guideline to select the amino acids for modifications. Following the predictions, modified AnkGAG1D4 proteins were produced and further evaluated for their CA-binding activity, using ELISA-modified method and bio-layer interferometry (BLI). RESULTS: Tyrosine at position 56 (Y56) in AnkGAG1D4 was experimentally identified as the most critical residue for CA binding. Rational substitutions of this residue diminished the binding affinity. However, vdW calculation preconized to substitute serine for tyrosine at position 45. Remarkably, the affinity for the viral CA was significantly enhanced in AnkGAG1D4-S45Y mutant, with no alteration of the target specificity. CONCLUSIONS: The S-to-Y mutation at position 45, based on the prediction of interacting amino acids and on vdW binding energy calculation, resulted in a significant enhancement of the affinity of AnkGAG1D4 ankyrin for its CA target. AnkGAG1D4-S45Y mutant represented the starting point for further construction of variants with even higher affinity towards the viral CA, and higher therapeutic potential in the future.


Assuntos
Antivirais/química , Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Aminoácidos , Anquirinas/química , Anquirinas/metabolismo , Anquirinas/farmacologia , Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
3.
PLoS Pathog ; 11(10): e1005203, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26491970

RESUMO

Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35-217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35-338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214-338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus.


Assuntos
Proteínas do Capsídeo/química , Nodaviridae/química , Montagem de Vírus , Cálcio/metabolismo , Cristalografia por Raios X , Polietilenoglicóis/farmacologia , Estrutura Terciária de Proteína , Vírion/química
4.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 1006-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849409

RESUMO

10-Formyltetrahydrofolate dehydrogenase (FDH), which is composed of a small N-terminal domain (Nt-FDH) and a large C-terminal domain, is an abundant folate enzyme in the liver and converts 10-formyltetrahydrofolate (10-FTHF) to tetrahydrofolate (THF) and CO2. Nt-FDH alone possesses a hydrolase activity, which converts 10-FTHF to THF and formate in the presence of ß-mercaptoethanol. To elucidate the catalytic mechanism of Nt-FDH, crystal structures of apo-form zNt-FDH from zebrafish and its complexes with the substrate analogue 10-formyl-5,8-dideazafolate (10-FDDF) and with the products THF and formate have been determined. The structures reveal that the conformations of three loops (residues 86-90, 135-143 and 200-203) are altered upon ligand (10-FDDF or THF) binding in the active site. The orientations and geometries of key residues, including Phe89, His106, Arg114, Asp142 and Tyr200, are adjusted for substrate binding and product release during catalysis. Among them, Tyr200 is especially crucial for product release. An additional potential THF binding site is identified in the cavity between two zNt-FDH molecules, which might contribute to the properties of product inhibition and THF storage reported for FDH. Together with mutagenesis studies and activity assays, the structures of zNt-FDH and its complexes provide a coherent picture of the active site and a potential THF binding site of zNt-FDH along with the substrate and product specificity, lending new insights into the molecular mechanism underlying the enzymatic properties of Nt-FDH.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ácido Fólico/análogos & derivados , Formiatos/metabolismo , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Tetra-Hidrofolatos/metabolismo
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2331-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195747

RESUMO

Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.


Assuntos
Elétrons , Estrutura Molecular , Cristalografia por Raios X
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3177-86, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478836

RESUMO

Plasmodium parasites, the causative agent of malaria, rely heavily on de novo folate biosynthesis, and the enzymes in this pathway have therefore been explored extensively for antimalarial development. Serine hydroxymethyltransferase (SHMT) from Plasmodium spp., an enzyme involved in folate recycling and dTMP synthesis, has been shown to catalyze the conversion of L- and D-serine to glycine (Gly) in a THF-dependent reaction, the mechanism of which is not yet fully understood. Here, the crystal structures of P. vivax SHMT (PvSHMT) in a binary complex with L-serine and in a ternary complex with D-serine (D-Ser) and (6R)-5-formyltetrahydrofolate (5FTHF) provide clues to the mechanism underlying the control of enzyme activity. 5FTHF in the ternary-complex structure was found in the 6R form, thus differing from the previously reported structures of SHMT-Gly-(6S)-5FTHF from other organisms. This suggested that the presence of D-Ser in the active site can alter the folate-binding specificity. Investigation of binding in the presence of D-Ser and the (6R)- or (6S)-5FTHF enantiomers indicated that both forms of 5FTHF can bind to the enzyme but that only (6S)-5FTHF gives rise to a quinonoid intermediate. Likewise, a large surface area with a highly positively charged electrostatic potential surrounding the PvSHMT folate pocket suggested a preference for a polyglutamated folate substrate similar to the mammalian SHMTs. Furthermore, as in P. falciparum SHMT, a redox switch created from a cysteine pair (Cys125-Cys364) was observed. Overall, these results assert the importance of features such as stereoselectivity and redox status for control of the activity and specificity of PvSHMT.


Assuntos
Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Malária Vivax/parasitologia , Plasmodium vivax/enzimologia , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Plasmodium vivax/química , Plasmodium vivax/metabolismo , Ligação Proteica , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo
7.
J Comput Aided Mol Des ; 28(8): 869-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997121

RESUMO

Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated Ank(GAG)1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTD(CA)) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the Ank(GAG)1D4-NTD(CA) interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the Ank(GAG)1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTD(CA) alpha-helices H1 and H7 could mediate the formation of the capsid-Ank(GAG)1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the Ank(GAG)1D4-NTD(CA) interaction. This was confirmed by R-to-A mutagenesis of NTD(CA), and by sequence analysis of trimodular ankyrins negative for capsid binding. In Ank(GAG)1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTD(CA) domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.


Assuntos
Anquirinas/farmacologia , Antivirais/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Montagem de Vírus
8.
JACS Au ; 4(6): 2130-2150, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938812

RESUMO

Monoclonal antibodies (mAbs) have gradually dominated the drug markets for various diseases. Improvement of the therapeutic activities of mAbs has become a critical issue in the pharmaceutical industry. A novel endo-ß-N-acetylglucosaminidase, EndoSz, from Streptococcus equisubsp. zooepidemicus Sz105 is discovered and applied to enhance the activities of mAbs. Our studies demonstrate that the mutant EndoSz-D234M possesses an excellent transglycosylation activity to generate diverse glycoconjugates on mAbs. We prove that EndoSz-D234M can be applied to various marketed therapeutic antibodies and those in development for antibody remodeling. The remodeled homogeneous antibodies (mAb-G2S2) produced by EndoSz-D234M increase the relative ADCC activities by 3-26-fold. We further report the high-resolution crystal structures of EndoSz-D234M in the apo-form at 2.15 Å and the complex form with a bound G2S2-oxazoline intermediate at 2.25 Å. A novel pH-jump method was utilized to obtain the complex structure with a high resolution. The detailed interactions of EndoSz-D234M and the carried G2S2-oxazoline are hence delineated. The oxazoline sits in a hole, named the oxa-hole, which stabilizes the G2S2-oxazoline in transit and catalyzes the further transglycosylation reaction while targeting Asn-GlcNAc (+1) of Fc. In the oxa-hole, the H-bonding network involved with oxazoline dominates the transglycosylation activity. A mobile loop2 (a.a. 152-159) of EndoSz-D234M reshapes the binding grooves for the accommodation of G2S2-oxazoline upon binding, at which Trp154 forms a hydrogen bond with Man (-2). The long loop4 (a.a. 236-248) followed by helix3 is capable of dominating the substrate selectivity of EndoSz-D234M. In addition, the stepwise transglycosylation behavior of EndoSz-D234M is elucidated. Based on the high-resolution structures of the apo-form and the bound form with G2S2-oxazoline as well as a systematic mutagenesis study of the relative transglycosylation activity, the transglycosylation mechanism of EndoSz-D234M is revealed.

9.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 154-167, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762861

RESUMO

The alkaline α-galactosidase AtAkαGal3 from Arabidopsis thaliana catalyzes the hydrolysis of α-D-galactose from galacto-oligosaccharides under alkaline conditions. A phylogenetic analysis based on sequence alignment classifies AtAkαGal3 as more closely related to the raffinose family of oligosaccharide (RFO) synthases than to the acidic α-galactosidases. Here, thin-layer chromatography is used to demonstrate that AtAkαGal3 exhibits a dual function and is capable of synthesizing stachyose using raffinose, instead of galactinol, as the galactose donor. Crystal structures of complexes of AtAkαGal3 and its D383A mutant with various substrates and products, including galactose, galactinol, raffinose, stachyose and sucrose, are reported as the first representative structures of an alkaline α-galactosidase. The structure of AtAkαGal3 comprises three domains: an N-terminal domain with 13 antiparallel ß-strands, a catalytic domain with an (α/ß)8-barrel fold and a C-terminal domain composed of ß-sheets that form two Greek-key motifs. The WW box of the N-terminal domain, which comprises the conserved residues FRSK75XW77W78 in the RFO synthases, contributes Trp77 and Trp78 to the +1 subsite to contribute to the substrate-binding ability together with the (α/ß)8 barrel of the catalytic domain. The C-terminal domain is presumably involved in structural stability. Structures of the D383A mutant in complex with various substrates and products, especially the natural substrate/product stachyose, reveal four complete subsites (-1 to +3) at the catalytic site. A functional loop (residues 329-352) that exists in the alkaline α-galactosidase AtAkαGal3 and possibly in RFO synthases, but not in acidic α-galactosidases, stabilizes the stachyose at the +2 and +3 subsites and extends the catalytic pocket for the transferase mechanism. Considering the similarities in amino-acid sequence, catalytic domain and activity between alkaline α-galactosidases and RFO synthases, the structure of AtAkαGal3 might also serve a model for the study of RFO synthases, structures of which are lacking.


Assuntos
Arabidopsis , alfa-Galactosidase , alfa-Galactosidase/genética , alfa-Galactosidase/química , Rafinose/química , Hidrolases , Filogenia , Galactose
10.
Nat Commun ; 14(1): 545, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726015

RESUMO

Understanding the structural diversity of honeybee-infecting viruses is critical to maintain pollinator health and manage the spread of diseases in ecology and agriculture. We determine cryo-EM structures of T = 4 and T = 3 capsids of virus-like particles (VLPs) of Lake Sinai virus (LSV) 2 and delta-N48 LSV1, belonging to tetraviruses, at resolutions of 2.3-2.6 Å in various pH environments. Structural analysis shows that the LSV2 capsid protein (CP) structural features, particularly the protruding domain and C-arm, differ from those of other tetraviruses. The anchor loop on the central ß-barrel domain interacts with the neighboring subunit to stabilize homo-trimeric capsomeres during assembly. Delta-N48 LSV1 CP interacts with ssRNA via the rigid helix α1', α1'-α1 loop, ß-barrel domain, and C-arm. Cryo-EM reconstructions, combined with X-ray crystallographic and small-angle scattering analyses, indicate that pH affects capsid conformations by regulating reversible dynamic particle motions and sizes of LSV2 VLPs. C-arms exist in all LSV2 and delta-N48 LSV1 VLPs across varied pH conditions, indicating that autoproteolysis cleavage is not required for LSV maturation. The observed linear domino-scaffold structures of various lengths, made up of trapezoid-shape capsomeres, provide a basis for icosahedral T = 4 and T = 3 architecture assemblies. These findings advance understanding of honeybee-infecting viruses that can cause Colony Collapse Disorder.


Assuntos
Proteínas do Capsídeo , Vírus de RNA , Abelhas , Animais , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Microscopia Crioeletrônica , Conformação Molecular , Montagem de Vírus
11.
J Bacteriol ; 194(22): 6206-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22984263

RESUMO

Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5'-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with L-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (L-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60 °C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.


Assuntos
Deinococcus/enzimologia , Ácido Glutâmico/química , Cetoácidos/química , Transaminases/química , Transaminases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Espectrofotometria , Especificidade por Substrato
12.
Plant Mol Biol ; 80(4-5): 389-403, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22903596

RESUMO

Cytosolic Oryza sativa glyceraldehyde-3-phosphate dehydrogenase (OsGAPDH), the enzyme involved in the ubiquitous glycolysis, catalyzes the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate (BPG) using nicotinamide adenine dinucleotide (NAD) as an electron acceptor. We report crystal structures of OsGAPDH in three conditions of NAD-free, NAD-bound and sulfate-soaked forms to discuss the molecular determinants for coenzyme specificity. The structure of OsGAPDH showed a homotetramer form with each monomer comprising three domains-NAD-binding, catalytic and S-loop domains. NAD binds to each OsGAPDH subunits with some residues forming positively charged grooves that attract sulfate anions, as a simulation of phosphate groups in the product BPG. Phe37 not only forms a bottleneck to improve NAD-binding but also combines with Pro193 and Asp35 as key conserved residues for NAD-specificity in OsGAPDH. The binding of NAD alters the side-chain conformation of Phe37 with a 90° rotation related to the adenine moiety of NAD, concomitant with clamping the active site about 0.6 Å from the "open" to "closed" form, producing an increased affinity specific for NAD. Phe37 exists only in higher organisms, whereas it is replaced by other residues (Thr or Leu) with smaller side chains in lower organisms, which makes a greater distance between Leu34 and NAD of E. coli GAPDH than that between Phe37 and NAD of OsGAPDH. We demonstrated that Phe37 plays a crucial role in stabilizing NAD binding or intermediating of apo-holo transition, resulting in a greater NAD-dependent catalytic efficiency using site-directed mutagenesis. Phe37 might be introduced by evolution generating a catalytic advantage in cytosolic GAPDH.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , NAD/metabolismo , Oryza/enzimologia , Fenilalanina/metabolismo , Sulfatos/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 285(30): 23251-64, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20466731

RESUMO

Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade beta-propeller fold linked to a C-terminal beta-sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (-1 to +3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the -1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.


Assuntos
Aspergillus/enzimologia , Biocatálise , Domínio Catalítico , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade
14.
J Biol Chem ; 285(41): 31603-15, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20685646

RESUMO

Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)(n), into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67-Thr-69 and Ile-106-Val-112) to interact with (NAG)(n), generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Šalong the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)(n) reveal (NAG)(2), (NAG)(2), and (NAG)(4) in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)(4); in an intermediate state, E145Q/Y227F with a boat-form NAG at the -1 subsite, -1-(NAG); after hydrolysis, E145Q with a chair form -1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between -1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of -1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of -1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)(n) provide new insights into its substrate binding and the mechanistic action.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Quitinases/química , Substituição de Aminoácidos , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Dissacarídeos/química , Dissacarídeos/genética , Dissacarídeos/metabolismo , Cinética , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
15.
Artigo em Inglês | MEDLINE | ID: mdl-20516610

RESUMO

To obtain a complete structure of the Bacillus thuringiensis Cry4Ba mosquito-larvicidal protein, a 65 kDa functional form of the Cry4Ba-R203Q mutant toxin was generated for crystallization by eliminating the tryptic cleavage site at Arg203. The 65 kDa trypsin-resistant fragment was purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 184.62, c = 187.36 A. Diffraction data were collected to at least 2.07 A resolution using synchrotron radiation and gave a data set with an overall R(merge) of 9.1% and a completeness of 99.9%. Preliminary analysis indicated that the asymmetric unit contained one molecule of the active full-length mutant, with a V(M) coefficient and solvent content of 4.33 A(3) Da(-1) and 71%, respectively.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Cristalização , Cristalografia por Raios X , Endotoxinas/genética , Proteínas Hemolisinas/genética , Peso Molecular , Mutação
16.
Artigo em Inglês | MEDLINE | ID: mdl-20124706

RESUMO

The crystal structure of Bacillus amyloliquefaciens alpha-amylase (BAA) at 1.4 A resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family. The final model of BAA is composed of two molecules in a back-to-back orientation, which is likely to be a consequence of crystal packing. Despite a high degree of identity, comparison of the structure of BAA with those of other liquefying-type alpha-amylases indicated moderate discrepancies at the secondary-structural level. Moreover, a domain-displacement survey using anisotropic B-factor and domain-motion analyses implied a significant contribution of domain B to the total flexibility of BAA, while visual inspection of the structure superimposed with that of B. licheniformis alpha-amylase (BLA) indicated higher flexibility of the latter in the central domain A. Therefore, it is suggested that domain B may play an important role in liquefying alpha-amylases, as its rigidity offers a substantial improvement in thermostability in BLA compared with BAA.


Assuntos
Bacillus/enzimologia , alfa-Amilases/química , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína , Temperatura , alfa-Amilases/metabolismo
17.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 147-154, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32038045

RESUMO

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.


Assuntos
Modelos Moleculares , Software , Animais , Cristalografia por Raios X/métodos , Penaeidae/virologia , Vírion/química
18.
ACS Omega ; 5(7): 3428-3443, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118157

RESUMO

The protrusion domain (P-domain; MrNVPd) of Macrobrachium rosenbergii nodavirus (MrNV) exists in two conformations, parallel and X-shaped. We have performed a theoretical study to gain insight into the nature of the dimeric interactions involving the dimeric interfaces within parallel and X-shaped conformations of MrNVPd by applying the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses in the framework of the density functional theory (DFT) approach. The results reveal that the dimer-dimer interfaces of MrNVPd have hydrogen bonds of common types. Leu255-Lys287, Tyr257-Lys287, Lys287-Ser253, Met294-Cys328, Asp295-Lys327, Ser298-Ser324, Ile326-Asp295, and Cys328-Met294 are the key residue pairs of the dimer-dimer interfaces to maintain the dimer-dimer structures of MrNVPd through charge-charge, charge-dipole, dipole-dipole, hydrophobic, and hydrogen bonding interactions. The strengths of these intermolecular dimer-dimer interactions in the parallel conformation are much greater than those in the X-shaped conformation. The parallel trimeric interface is held basically by electrostatic and hydrophobic interactions. The electrostatic interactions accompanying a strong hydrogen bond of Oγ1-Hγ1···Oγ1 in the Thr276 A-Thr276 D pair maintain the intermolecular interface of two X-shaped MrNVPd dimers.

19.
IUCrJ ; 7(Pt 5): 934-948, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939285

RESUMO

In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phospho-relay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phospho-transfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phospho-ryl group. The structure of HptB folds into an elongated four-helix bundle - helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (ß/α)5 topology with five-stranded parallel ß-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.

20.
J Bacteriol ; 191(24): 7597-608, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820092

RESUMO

Adenylylsulfate reductase (adenosine 5'-phosphosulfate [APS] reductase [APSR]) plays a key role in catalyzing APS to sulfite in dissimilatory sulfate reduction. Here, we report the crystal structure of APSR from Desulfovibrio gigas at 3.1-A resolution. Different from the alpha(2)beta(2)-heterotetramer of the Archaeoglobus fulgidus, the overall structure of APSR from D. gigas comprises six alphabeta-heterodimers that form a hexameric structure. The flavin adenine dinucleotide is noncovalently attached to the alpha-subunit, and two [4Fe-4S] clusters are enveloped by cluster-binding motifs. The substrate-binding channel in D. gigas is wider than that in A. fulgidus because of shifts in the loop (amino acid 326 to 332) and the alpha-helix (amino acid 289 to 299) in the alpha-subunit. The positively charged residue Arg160 in the structure of D. gigas likely replaces the role of Arg83 in that of A. fulgidus for the recognition of substrates. The C-terminal segment of the beta-subunit wraps around the alpha-subunit to form a functional unit, with the C-terminal loop inserted into the active-site channel of the alpha-subunit from another alphabeta-heterodimer. Electrostatic interactions between the substrate-binding residue Arg282 in the alpha-subunit and Asp159 in the C terminus of the beta-subunit affect the binding of the substrate. Alignment of APSR sequences from D. gigas and A. fulgidus shows the largest differences toward the C termini of the beta-subunits, and structural comparison reveals notable differences at the C termini, activity sites, and other regions. The disulfide comprising Cys156 to Cys162 stabilizes the C-terminal loop of the beta-subunit and is crucial for oligomerization. Dynamic light scattering and ultracentrifugation measurements reveal multiple forms of APSR upon the addition of AMP, indicating that AMP binding dissociates the inactive hexamer into functional dimers, presumably by switching the C terminus of the beta-subunit away from the active site. The crystal structure of APSR, together with its oligomerization properties, suggests that APSR from sulfate-reducing bacteria might self-regulate its activity through the C terminus of the beta-subunit.


Assuntos
Archaeoglobus fulgidus/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Controles Informais da Sociedade , Análise Espectral Raman , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA