Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328678

RESUMO

The aim of this study was to investigate the biocompatibility of contrast agents, such as gadolinium 1, 4, 7, 10 tetraazacyclo-dodecane tetraacetic acid (GdDOTA) and gadolinium dioctyl terephthalate (GdDOTP), encapsulated in a polymeric matrix containing chitosan and hyaluronic acid using RAW264.7 murine macrophages and human blood samples. The cell viability and cytotoxicity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, while cell cycle analysis was determined in RAW264.7 cells using flow cytometry. The mitochondrial membrane potential (MMP), hemolytic index, complement activation, and thrombogenic potential of gadolinium (Gd) containing nanohydrogels were measured by fluorometric and spectrophotometric methods. Taken together, our results demonstrate the good bio- and hemocompatibility of chitosan-based nanohydrogels with the RAW264.7 cell line and human blood cells, suggesting that these could be used as injectable formulations for the magnetic resonance imaging diagnostic of lymph nodes.


Assuntos
Quitosana , Meios de Contraste , Animais , Gadolínio , Humanos , Ácido Hialurônico , Imageamento por Ressonância Magnética/métodos , Camundongos
2.
Inorg Chem ; 58(19): 12798-12808, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31496230

RESUMO

The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures. Especially for G1-4GdDO3A, a marked increase is observed between 20 and 60 MHz. This structure differs from G1-4GdDOTAGA by an increased rigidity due to the aromatic linker between each chelate and the organic framework. This has the effect of limiting local rotational movements, which has a positive impact on relaxivity.

3.
Molecules ; 24(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109021

RESUMO

A new luminescent Tb-DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric-4,7,10- triacetic acid) complex (TbL) was synthesized and covalently immobilized on a silicon wafer. The grafting process was monitored by means of IR and XPS spectroscopies and the optical properties of the functionalized silicon wafer (TbL@Si) were investigated by fluorescence experiments. A homemade setup was then implemented in order to follow TbL@Si optical properties in the presence of gaseous nitric oxide (NO). The prima facie results indicated that in the presence of NO, the wafer fluorescence was partially quenched. This quenching was reversible as soon as NO was pumped outside the fluorescence cell, which could be interesting for the further development of lanthanide labelled silicon wafers as gas phase sensors.


Assuntos
Complexos de Coordenação/síntese química , Óxido Nítrico/análise , Complexos de Coordenação/química , Ligantes , Luminescência , Estrutura Molecular , Silício/química
4.
Biomacromolecules ; 18(9): 2756-2766, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777565

RESUMO

To synthesize chitosan nanoparticles (CS NPs), ionic gelation is a very attractive method. It relies on the spontaneous supramolecular assembly of cationic CS with anionic compounds, which leads to nanohydrogels. To extend ionic gelation to functionalized CS, the assessment of CS degree of substitution (DSCS) is a key step. In this paper, we have developed a hyphenated strategy for functionalized CS characterization, based upon 1H, DOSY and, when relevant, 1D diffusion-filtered 19F NMR spectroscopies. For that, we have synthesized two series of water-soluble CS via amidation of CS amino groups with mPEG2000-COOH or fluorinated synthons (TFB-COOH). The aforementioned NMR techniques helped to discriminate between ungrafted and grafted synthons and finally to determine DSCS. According to DSCS values, the selection of CS-mPEG2000 or CS-TFB copolymers can be made to obtain, in the presence of hyaluronic acid (HA) and tripolyphosphate (TPP), CS-mPEG2000-TPP/HA or CS-TFB-TPP/HA nanohydrogels suitable for drug delivery.


Assuntos
Quitosana/análise , Hidrogéis/síntese química , Nanopartículas/química , Animais , Linhagem Celular , Compostos de Flúor/química , Ácido Hialurônico/química , Hidrogéis/efeitos adversos , Hidrogéis/química , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/efeitos adversos , Polietilenoglicóis/química
5.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674983

RESUMO

The aim of this study was the investigation of biochemical and histological changes induced in different tissues, as a result of the subcutaneous administration of Gd nanohydrogels (GdDOTA⸦CS-TPP/HA) in a CD-1 mouse strain. The nanohydrogels were obtained by encapsulating contrast agents (GdDOTA) in a biocompatible polymer matrix composed of chitosan (CS) and hyaluronic acid (HA) through the ionic gelation process. The effects of Gd nanohydrogels on the redox status were evaluated by measuring specific activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), and protein-reactive carbonyl groups (PRCG), in the liver, kidney, and heart tissues. The nitrosylated proteins expression were analyzed with Western Blot and the serum biochemical markers were measured with spectrophotometric methods. Also, a histological analysis of CD-1 mouse tissues was investigated. These results indicated that Gd nanohydrogels could potentially be an alternative to current MRI contrast agents thanks to their low toxicity in vivo.

6.
Chemistry ; 19(19): 6122-36, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23512788

RESUMO

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1) mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logß110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


Assuntos
Gadolínio/química , Compostos Heterocíclicos com 1 Anel/química , Dióxido de Silício/química , Siloxanas/química , Substância P/análogos & derivados , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Radioterapia Guiada por Imagem , Espectrometria de Fluorescência , Substância P/química
7.
Nanoscale ; 15(44): 18068-18079, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916411

RESUMO

19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging in novel therapies, such as cellular therapies and theranostic nanocarriers. Nanocarriers loaded with liquid perfluorocarbon (PFC) typically have a (single) core-shell structure with PFC in the core due to the poor miscibility of PFC with organic and inorganic solvents. Paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of the 19F signal is possible only with fluorophilic PFC-soluble chelates. However, these chelates cannot interact with the surrounding environment and they might result in image artifacts. Conversely, chelates bound to the nanoparticle shell typically have a minimal effect on the 19F signal and a strong impact on the aqueous environment. We show that the confinement of PFC in biodegradable polymeric nanoparticles (NPs) with a multicore structure enables the modulation of longitudinal (T1) and transverse (T2) 19F relaxation, as well as proton (1H) signals, using non-fluorophilic paramagnetic chelates. We compared multicore NPs versus a conventional single core structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. This modulated relaxation also makes multicore NPs sensitive to various acidic pH environments, while preserving their stability. This effect was not observed with single core nanocapsules (NCs). Importantly, paramagnetic chelates affected both T1 and T219F relaxation in multicore NPs, but not in single core NCs. Both relaxation times of the 19F nucleus were enhanced with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water permeable, proton enhancement additionally was observed in MRI.


Assuntos
Fluorocarbonos , Nanopartículas , Gadolínio/química , Meios de Contraste/farmacologia , Meios de Contraste/química , Prótons , Imageamento por Ressonância Magnética/métodos , Polímeros de Fluorcarboneto , Quelantes/farmacologia , Fluorocarbonos/química , Nanopartículas/química
8.
Angew Chem Int Ed Engl ; 51(36): 9119-22, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22865621

RESUMO

Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells.


Assuntos
Meios de Contraste/química , Compostos Heterocíclicos/química , Hidrogéis/química , Compostos Organometálicos/química , Animais , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética , Nanopartículas/química , Polissacarídeos/química , Ratos
9.
Gels ; 8(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323295

RESUMO

Hyaluronic acid (HA) was functionalized with a series of amino synthons (octylamine, polyethylene glycol amine, trifluoropropyl amine, rhodamine). Sodium hyaluronate (HAs) was first converted into its protonated form (HAp) and the reaction was conducted in DMSO by varying the initial ratio (-NH2 (synthon)/COOH (HAp)). HA derivatives were characterized by a combination of techniques (FTIR, 1H NMR, 1D diffusion-filtered 19F NMR, DOSY experiments), and degrees of substitution (DSHA) varying from 0.3% to 47% were determined, according to the grafted synthon. Nanohydrogels were then obtained by ionic gelation between functionalized hyaluronic acids and chitosan (CS) and tripolyphosphate (TPP) as a cross-linker. Nanohydrogels for which HA and CS were respectively labeled by rhodamine and fluorescein which are a fluorescent donor-acceptor pair were subjected to FRET experiments to evaluate the stability of these nano-assemblies.

10.
Inorg Chem ; 50(9): 4029-38, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21476596

RESUMO

The coordination properties and the photophysical response of a new cyclam fluorescent probe for Zn(II), [L1H: 1-(benzimidazol-2-ylmethyl]-1,4, 8,11-tetraazacyclotetradecane] toward Cu(II), Zn(II), and Cd(II) are reported. The stability constants of the corresponding complexes were determined by means of potentiometric measurements in aqueous solution. The fluorescence of L1H was quenched by the presence of Cu(II), and L1H behaves as an OFF-ON sensor for Zn(II) even in the presence of a wide range of biological divalent cations. Furthermore, on addition of successive amounts of Zn(II), the fluorescence emission of L1H increases linearly by a factor of 12. This can be correlated to the efficient Zn(II) binding of L1H and to the participation of all the amine functions in the metal coordination which prevents the photoinduced electron transfer (PET) effect and promotes a good chelation-enhanced fluorescence (CHEF) effect; this confers to the cyclam probe better sensing properties than the cyclen ionophore.


Assuntos
Compostos Aza/química , Benzimidazóis/química , Técnicas de Química Analítica/instrumentação , Corantes Fluorescentes/química , Compostos Heterocíclicos/química , Zinco/análise , Modelos Moleculares , Conformação Molecular , Fenômenos Ópticos , Processos Fotoquímicos , Potenciometria , Espectrometria de Fluorescência , Termodinâmica , Zinco/química
11.
Nanomaterials (Basel) ; 8(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597306

RESUMO

Although the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.5 mg·mL-1 respectively) using SVEC4-10 murine lymph node endothelial cells. The sulforhodamine B method and released lactate dehydrogenase (LDH) activity were used as cell viability tests. Reactive oxygen species (ROS), reduced glutathione (GSH) and malondialdehyde (MDA) were measured by spectrophotometric and fluorimetric methods. Nrf-2 protein expression was evaluated by Western blot analysis and genotoxicity by alkaline comet assay. After 24 h, the cells viability was not affected by all types and doses of nanogels. The increase of ROS induced a low decrease of GSH concentration and a time-dependent raise of MDA one was produced by citric GdDOTA⊂CS-TPP/HA with a chitosan concentration of 1.5 mg·mL-1, at the highest dose applied. None of the tested nanogels induced changes in Nrf-2 protein expression. A slight but significant genotoxic effect was caused only by citric GdDOTA⊂CS-TPP/HA where CS concentration was 1.5 mg·mL-1. Our results showed a better biocompatibility with lymph node endothelial cells for Gd-loaded hyaluronic acid-chitosan based nanogels with a concentration in chitosan of 2.5 mg·mL-1.

12.
Contrast Media Mol Imaging ; 10(3): 179-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25130910

RESUMO

Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness.


Assuntos
Meios de Contraste/química , Gadolínio DTPA/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Quelantes , Gadolínio/química , Ouro/química , Termodinâmica
13.
J Mater Chem B ; 2(37): 6397-6405, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262156

RESUMO

A series of hydrogel nanoparticles incorporating MRI contrast agents (GdDOTP and MS325) as potential cross-linkers were elaborated by an easy and robust ionotropic gelation process. By this process, high Gd loadings were obtained (between 1.8 and 14.5 × 104 Gd centres per NP). By tuning the cross-linker ionization degree and the nature of the polymer matrix it was possible to boost the r1 relaxivity per Gd centre up to 22-fold. The greatest gains in relaxivity were observed for nanogels for which the polymer matrix was constituted of chitosan and hyaluronan. Relaxivities per Gd centre as high as 100 s-1 mM-1 at 30 MHz can be reached, which highlighted the fact that molecular motion of the Gd chelate was effectively restricted and water access to the inner core of these nanogels was not limited.

14.
Chempluschem ; 79(1): 171-180, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31986758

RESUMO

The elaboration, characterisation and efficiency of potential two-photon-excited photodynamic therapy (PDT) treatment of new poly(d,l-lactide-co-glycolide) nanoparticles loaded with ruthenium(II) complexs are presented. The materials are based on the encapsulation of RuII complexes through an all-biocompatible process. The size of the nanoparticles is around 100 nm. The internal concentration is several orders of magnitude higher than the overall concentration, which leads to a more efficient and targeted effect. The therapeutic potential for PDT of these nanoparticles has been studied in vitro on C6 glioma cells.

15.
Dalton Trans ; 43(25): 9567-78, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24828602

RESUMO

The synthesis of a new macrocyclic chelator incorporating a benzimidazole heterocycle is reported. Lanthanide complexes with macrocyclic chelators based on 1,4,7,10-tetra(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA) and 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO3A) are of interest in luminescent, radiopharmaceutical and magnetic resonance (MR) biomedical imaging applications. The benzimidazole DO3A chelator allows for sensitisation of europium(iii), terbium(iii) and ytterbium(iii) luminescence by the heterocycle and also shows a pH dependent coordination change due to protonation of the chelator (pKa = 4.1 for the europium(iii) complex). The thermodynamic stability of the complexes has been investigated by potentiometric titration with the gadolinium(iii) complex showing significantly higher stability than the zinc(ii) complex, where log ßZnLH = 28.1 and log ßGdLH = 32.1.


Assuntos
Benzimidazóis/química , Quelantes/química , Complexos de Coordenação/química , Compostos Heterocíclicos com 1 Anel/química , Elementos da Série dos Lantanídeos/química , Európio/química , Gadolínio/química , Concentração de Íons de Hidrogênio , Luminescência , Imageamento por Ressonância Magnética , Modelos Químicos , Térbio/química , Termodinâmica , Itérbio/química , Zinco/química
16.
Dalton Trans ; 42(34): 12157-64, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23839769

RESUMO

A new cyclen derivative L, bearing a methyl-chromeno-pyridinylidene hydrazone moiety, was synthesized and studied in MeOH, as potential fluorescent "OFF-on-ON" sensors for Zn(ii). Photophysical properties of this ligand being PET regulated, L was only weakly emissive in the absence of metal ions (OFF). L fluorescence was increased modestly upon addition of one equivalent of Zn(II), and further increased upon addition of a second equivalent. Therefore, Zn : L behaved as a highly sensitive ON sensor for zinc. This efficiency was correlated to Zn(II) coordination via the hydrazone moiety of the fluorophore, producing an efficient CHelation-Enhanced Fluorescence (CHEF) effect. A complementary theoretical study carried out with DFT calculations further elucidated the optical properties.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos/química , Espectrometria de Fluorescência , Zinco/análise , Ciclamos , Íons/química , Ligantes , Teoria Quântica
17.
Langmuir ; 24(8): 4026-31, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18303930

RESUMO

In the view of designing functional nanoparticles, the encapsulation of 1,4,7,10-tetraazacyclododecane (cyclen) within silica nanoparticles using the Stöber process was studied. In the presence of cyclen and tetraethoxysilane (TEOS), silica particles exhibiting an unusual core-shell structure were obtained. On then basis of TEM, DLS, and NMR data, we suggest that the particle core is constituted of hybrid primary nanoparticles resulting from cyclen-silica interactions, whereas the shell formation results from further condensation of unreacted silica precursors. Control experiments performed with the zinc-cyclen complex and ammonia addition suggest that cyclen-TEOS interactions arise from the activation of the silicon alkoxide hydrolysis with the polyazamacrocycle amine groups. These data are discussed in the context of silica biomineralization mechanisms, where polyamine/silica interactions have been shown to play a major role. Moreover, the possibility to control the size and the structure of these nanoparticles makes them promising materials for pharmaceutical applications.


Assuntos
Compostos Aza/química , Compostos Macrocíclicos/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Dióxido de Silício/química , Ligantes , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula
18.
Chemistry ; 12(26): 6841-51, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16770815

RESUMO

We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.


Assuntos
Quelantes/química , Gadolínio/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Xilenos/química , Compostos Aza/síntese química , Compostos Aza/química , Cinética , Ligantes , Compostos Macrocíclicos/síntese química , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/síntese química , Potenciometria , Soluções , Espectrofotometria Ultravioleta , Termodinâmica , Água/química , Xilenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA