Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33287029

RESUMO

The open nature of radio propagation enables ubiquitous wireless communication. This allows for seamless data transmission. However, unauthorized users may pose a threat to the security of the data being transmitted to authorized users. This gives rise to network vulnerabilities such as hacking, eavesdropping, and jamming of the transmitted information. Physical layer security (PLS) has been identified as one of the promising security approaches to safeguard the transmission from eavesdroppers in a wireless network. It is an alternative to the computationally demanding and complex cryptographic algorithms and techniques. PLS has continually received exponential research interest owing to the possibility of exploiting the characteristics of the wireless channel. One of the main characteristics includes the random nature of the transmission channel. The aforesaid nature makes it possible for confidential and authentic signal transmission between the sender and the receiver in the physical layer. We start by introducing the basic theories of PLS, including the wiretap channel, information-theoretic security, and a brief discussion of the cryptography security technique. Furthermore, an overview of multiple-input multiple-output (MIMO) communication is provided. The main focus of our review is based on the existing key-less PLS optimization techniques, their limitations, and challenges. The paper also looks into the promising key research areas in addressing these shortfalls. Lastly, a comprehensive overview of some of the recent PLS research in 5G and 6G technologies of wireless communication networks is provided.

2.
Sensors (Basel) ; 19(19)2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590452

RESUMO

The Internet of Things (IoT) is an emerging technology that aims to enable the interconnection of a large number of smart devices and heterogeneous networks. Ad hoc networks play an important role in the designing of IoT-enabled platforms due to their efficient, flexible, low-cost and dynamic infrastructures. These networks utilize the available resources efficiently to maintain the Quality of Service (QoS) in a multi-hop communication. However, in a multi-hop communication, the relay nodes can be malicious, thus requiring a secured and reliable data transmission. In this paper, we propose a QoS-aware secured communication scheme for IoT-based networks (QoS-IoT). In QoS-IoT, a Sybil attack detection mechanism is used for the identification of Sybil nodes and their forged identities in multi-hop communication. After Sybil nodes detection, an optimal contention window (CW) is selected for QoS provisioning, that is, to achieve per-flow fairness and efficient utilization of the available bandwidth. In a multi-hop communication, the medium access control (MAC) layer protocols do not perform well in terms of fairness and throughput, especially when the nodes generate a large amount of data. It is because the MAC layer has no capability of providing QoS to prioritized or forwarding flows. We evaluate the performance of QoS-IoT in terms of Sybil attack detection, fairness, throughput and buffer utilization. The simulation results show that the proposed scheme outperforms the existing schemes and significantly enhances the performance of the network with a large volume of data. Moreover, the proposed scheme is resilient against Sybil attack.

3.
Heliyon ; 5(5): e01591, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193432

RESUMO

Studies conducted on resource management in wireless sensor networks have identified energy efficient routing protocols as one of the energy saving mechanisms that can be used to manage the consumption of networks' available energy and extend network lifetime. Routing protocols assist in finding paths for transmission of sensed events, and they must be able to extend the lifetime of a network despite some of the limitations of sensor nodes in a network and the harsh environments in which the sensor nodes are to operate. In this paper, we survey and compare existing routing protocols in wireless sensor networks. We start by introducing the different solutions that can be used to improve the network lifetime and focus on energy efficient routing protocols as the area of the survey, in addition to network topology modeling. We also model the network regarding energy consumption, sensing and event extraction analysis in the network. Categorization of the routing protocols into homogeneous and heterogeneous was performed, for which, sub-classification into static and mobile and other behavioral patterns of the routing protocols was done. The second phase of the paper presents models and simulations of selected routing protocols and comparisons of their performances. We conclude this paper by discussing future work directions with highlights on some futuristic applications.

4.
Heliyon ; 4(6): e00655, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29984328

RESUMO

This paper presents the design and simulation of an Automatic Room Heater Control system. This system allows the user to set a desired temperature which is then compared to the room temperature measured by a temperature sensor. With the help of a microcontroller, the system responds by turning ON any of the two (2) loads (Fan or a heater) automatically depending on the temperature difference. The Fan is triggered ON when the room temperature is higher than the set temperature and the heater is triggered ON when the room temperature is lower than the set temperature. The system was designed and simulated using Proteus 8, circuit building software used for building electronics system. Proteus software was used to design and simulate the main circuit, and Micro-C hex file was loaded on the Proteus schematic design. For coding the PIC Microcontroller, Micro-C compiler was used. A 5 V DC power supply was designed in order to provide a biasing voltage to most of the active devices used in the system design circuit. The DC power supply was designed and simulated using Multisim software. The system was simulated and simulation results were in accordance to the design specifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA