Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Neurochem ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693066

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder that is affecting an increasing number of older adults. Although PD is mostly sporadic, genetic mutations have been found in cohorts of families with a history of familial PD (FPD). The first such mutation linked to FPD causes a point mutation (A53T) in α-synuclein (α-syn), a major component of Lewy bodies, which are a classical pathological hallmark of PD. These findings suggest that α-syn is an important contributor to the development of PD. In our previous study, we developed an adenoviral mouse model of PD and showed that the expression of wild-type (WT) α-syn or a mutant form with an increased propensity to aggregate, designated as WT-CL1 α-syn, could be used to study how α-syn aggregation contributes to PD. In this study, we established a transgenic mouse model that conditionally expresses WT or WT-CL1 α-syn in dopaminergic (DA) neurons and found that the expression of either WT or WT-CL1 α-syn was associated with an age-dependent degeneration of DA neurons and movement dysfunction. Using this model, we were able to monitor the process of α-syn aggregate formation and found a correlation between age and the number and sizes of α-syn aggregates formed. These results provide a potential mechanism by which age-dependent α-syn aggregation may lead to the formation of Lewy bodies in PD pathogenesis.

2.
Apoptosis ; 20(4): 491-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578648

RESUMO

X-linked inhibitor of apoptosis (XIAP) is a protein that possesses anti-apoptotic function and dysregulation of it has been linked to a number human disease such as cancers and neurodegenerative disorders. In our previous study, we have found that nitric oxide (NO) can modulate the anti-apoptotic function of XIAP and found that this can contribute to the pathogenesis of Parkinson's disease. Specifically, we found that modification of baculoviral IAP repeat 2 of XIAP by S-nitrosylation can compromise XIAP's anti-caspase 3 and anti-apoptotic function. In this study, we report that cysteine (Cys) 90, Cys 213 and Cys 327 can be specifically S-nitrosylated by NO. We found that mutations of Cys 90 and Cys 327 affect the normal structure of XIAP. More importantly, we found that S-nitrosylation of XIAP Cys 213 impairs the anti-caspase 3 and anti-apoptotic function of XIAP that we observed in our previous study.


Assuntos
Apoptose , Caspase 3/metabolismo , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular , Humanos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
3.
J Neurochem ; 122(2): 404-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22537068

RESUMO

Alpha-synuclein (α-syn) is a synaptic protein that mutations have been linked to Parkinson's disease (PD), a common neurodegenerative disorder that is caused by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). How α-syn can contribute to neurodegeneration in PD is not conclusive but it is agreed that mutations or excessive accumulation of α-syn can lead to the formation of α-syn oligomers or aggregates that interfere with normal cellular function and contribute to the degeneration of dopaminergic neurons. In this study, we found that α-syn can impair the normal dynamics of mitochondria and this effect is particular prominent in A53T α-syn mutant. In mice expressing A53T α-syn, age-dependent changes in both mitochondrial morphology and proteins that regulate mitochondrial fission and fusion were observed. In the cellular model of PD, we found that α-syn reduces the movement of mitochondria in both SH-SY5Y neuroblastoma and hippocampal neurons. Taken together, our study provides a new mechanism of how α-syn can contribute to PD through the impairment of normal dynamics of mitochondria.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doença de Parkinson Secundária/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia , Envelhecimento/fisiologia , Animais , Western Blotting , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Mitocôndrias/ultraestrutura , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson Secundária/metabolismo , Plasmídeos/genética , Medula Espinal/metabolismo , Transfecção , beta-Sinucleína/farmacologia
4.
Proc Natl Acad Sci U S A ; 106(12): 4900-5, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19273858

RESUMO

Inhibitors of apoptosis (IAPs) are a family of highly-conserved proteins that regulate cell survival through binding to caspases, the final executioners of apoptosis. X-linked IAP (XIAP) is the most widely expressed IAP and plays an important function in regulating cell survival. XIAP contains 3 baculoviral IAP repeats (BIRs) followed by a RING finger domain at the C terminal. The BIR domains of XIAP possess anticaspase activities, whereas the RING finger domain enables XIAP to function as an E3 ubiquitin ligase in the ubiquitin and proteasomal system. Our previous study showed that parkin, a protein that is important for the survival of dopaminergic neurons in Parkinson's disease (PD), is S-nitrosylated both in vitro and in vivo in PD patients. S-nitrosylation of parkin compromises its ubiquitin E3 ligase activity and its protective function, which suggests that nitrosative stress is an important factor in regulating neuronal survival during the pathogenesis of PD. In this study we show that XIAP is S-nitrosylated in vitro and in vivo in an animal model of PD and in PD patients. Nitric oxide modifies mainly cysteine residues within the BIR domains. In contrast to parkin, S-nitrosylation of XIAP does not affect its E3 ligase activity, but instead directly compromises its anticaspase-3 and antiapoptotic function. Our results confirm that nitrosative stress contributes to PD pathogenesis through the impairment of prosurvival proteins such as parkin and XIAP through different mechanisms, indicating that abnormal S-nitrosylation plays an important role in the process of neurodegeneration.


Assuntos
Neurônios/metabolismo , Neurônios/patologia , Compostos Nitrosos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Apoptose , Inibidores de Caspase , Sobrevivência Celular , Citoproteção , Modelos Animais de Doenças , Ativação Enzimática , Humanos , Camundongos , Neurônios/enzimologia , Óxido Nítrico/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/metabolismo
5.
Biochim Biophys Acta ; 1802(11): 935-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20674742

RESUMO

Parkinson's disease (PD) is a common neurodegenerative movement disorder that affects increasing number of elderly in the world population. The disease is caused by a selective degeneration of dopaminergic neurons in the substantia nigra pars compacta with the molecular mechanism underlying this neurodegeneration still not fully understood. However, various studies have shown that mitochondrial dysfunction and abnormal protein aggregation are two of the major contributors for PD. In fact this notion has been supported by recent studies on genes that are linked to familial PD (FPD). For instance, FPD linked gene products such as PINK1 and parkin have been shown to play critical roles in the quality control of mitochondria, whereas α-synuclein has been found to be the major protein aggregates accumulated in PD patients. These findings suggest that further understanding of how dysfunction of these pathways in PD will help develop new approaches for the treatment of this neurodegenerative disorder.


Assuntos
Mitocôndrias/fisiologia , Doença de Parkinson/fisiopatologia , Proteínas/fisiologia , Animais , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Doença de Parkinson/genética , Conformação Proteica , Proteínas/química , Proteínas/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia
6.
Biochim Biophys Acta ; 1792(7): 643-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19162179

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder marked by movement impairment caused by a selective degeneration of dopaminergic neurons. The mechanism for dopaminergic neuronal degeneration in PD is not completely clear, but it is believed that oxidative and nitrosative stress plays an important role during the pathogenesis of PD. This notion is supported by various studies that several indices of oxidative and nitrosative stress are increased in PD patients. In recent years, different pathways that are known to be important for neuronal survival have been shown to be affected by oxidative and nitrosative stress. Apart from the well-known oxidative free radicals induced protein nitration, lipid peroxidation and DNA damage, increasing evidence also suggests that some neuroprotective pathways can be affected by nitric oxide through S-nitrosylation. In addition, the selective dopaminergic neurodegeneration suggests that generation of oxidative stress associated with the metabolism of dopamine is an important contributor. Thorough understanding of how oxidative stress can contribute to the pathogenesis of PD will help formulate potential therapy for the treatment of this neurodegenerative disorder in the future.


Assuntos
Óxido Nítrico/metabolismo , Estresse Oxidativo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Animais , Humanos , Doença de Parkinson/genética
7.
Apoptosis ; 15(11): 1364-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20131005

RESUMO

Nitric oxide (NO) is a gaseous signaling molecule in the biological system. It mediates its function through the direct modification of various cellular targets, such as through S-nitrosylation. The process of S-nitrosylation involves the attachment of NO to the cysteine residues of proteins. Interestingly, an increasing number of cellular pathways are found to be regulated by S-nitrosylation, and it has been proposed that this redox signaling pathway is comparable to phosphorylation in cells. However, imbalance of NO metabolism has also been linked to a number of human diseases. For instance, NO is known to contribute to neurodegeneration by causing protein nitration, lipid peroxidation and DNA damage. Moreover, recent studies show that NO can also contribute to the process of neurodegeneration through the impairment of pro-survival proteins by S-nitrosylation. Thus, further understanding of how NO, through S-nitrosylation, can compromise neuronal survival will provide potential therapeutic targets for neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Proteínas/metabolismo , Animais , Cisteína/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Proteínas/genética
8.
Nitric Oxide ; 22(4): 290-5, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20149888

RESUMO

Nitric oxide (NO) is a gaseous signaling molecule which has physiological and pathological roles in the cell. Under normal conditions, NO is produced by nitric oxide synthase (NOS) and can induce physiological responses such as vasodilation. However, over-activation of NOS has been linked to a number of human pathological conditions. For instance, most neurodegenerative disorders are marked by the presence of nitrated protein aggregates. How nitrosative stress leads to neurodegeneration is not clear, but various studies suggest that increased nitrosative stress causes protein nitration which then leads to protein aggregation. Protein aggregates are highly toxic to neurons and can promote neurodegeneration. In addition to inducing protein aggregation, recent studies show that nitrosative stress can also compromise a number of neuroprotective pathways by modifying activities of certain proteins through S-nitrosylation. These findings suggest that increased nitrosative stress can contribute to neurodegeneration through multiple pathways.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Animais , Humanos , Transdução de Sinais
9.
PLoS One ; 15(4): e0232019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343709

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder which is mostly sporadic but familial-linked PD (FPD) cases have also been found. The first reported gene mutation that linked to PD is α-synuclein (α-syn). Studies have shown that mutations, increased expression or abnormal processing of α-syn can contribute to PD, but it is believed that multiple mechanisms are involved. One of the contributing factors is post-translational modification (PTM), such as phosphorylation of α-syn at serine 129 by G-protein-coupled receptor kinases (GRKs) and casein kinase 2α (CK2α). Another known important contributing factor to PD pathogenesis is oxidative and nitrosative stress. In this study, we found that GRK6 and CK2α can be S-nitrosylated by nitric oxide (NO) both in vitro and in vivo. S-nitrosylation of GRK6 and CK2α enhanced their kinase activity towards the phosphorylation of α-syn at S129. In an A53T α-syn transgenic mouse model of PD, we found that increased GRK6 and CK2α S-nitrosylation were observed in an age dependent manner and it was associated with an increased level of pSer129 α-syn. Treatment of A53T α-syn transgenic mice with Nω-Nitro-L-arginine (L-NNA) significantly reduced the S-nitrosylation of GRK6 and CK2α in the brain. Finally, deletion of neuronal nitric oxide synthase (nNOS) in A53T α-syn transgenic mice reduced the levels of pSer129 α-syn and α-syn in an age dependent manner. Our results provide a novel mechanism of how NO through S-nitrosylation of GRK6 and CK2α can enhance the phosphorylation of pSer129 α-syn in an animal model of PD.


Assuntos
Caseína Quinase II/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Óxido Nítrico/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fatores Etários , Animais , Caseína Quinase II/química , Modelos Animais de Doenças , Quinases de Receptores Acoplados a Proteína G/química , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Óxido Nítrico Sintase Tipo I/genética , Nitroarginina/administração & dosagem , Nitroarginina/farmacologia , Estresse Nitrosativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Fosforilação , Serina/metabolismo , alfa-Sinucleína/química
11.
J Neurochem ; 110(1): 208-19, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457126

RESUMO

Parkinson's disease (PD) is a common movement disorder marked by the loss of dopaminergic (DA) neurons in the brain stem and the presence of intraneuronal inclusions designated as Lewy bodies (LB). The cause of neurodegeneration in PD is not clear, but it has been suggested that protein misfolding and aggregation contribute significantly to the development of the disease. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Recent studies suggested that different types of ubiquitin linkages can modulate these two pathways in the process of protein degradation. In this study, we found that co-expression of ubiquitin can rescue neurons from alpha-syn-induced neurotoxicity in a Drosophila model of PD. This neuroprotection is dependent on the formation of lysine 48 polyubiquitin linkage which is known to target protein degradation via the proteasome. Consistent with our results that we observed in vivo, we found that ubiquitin co-expression in the cell can facilitate cellular protein degradation by the proteasome in a lysine 48 polyubiquitin-dependent manner. Taken together, these results suggest that facilitation of proteasomal protein degradation can be a potential therapeutic approach for PD.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Lisina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Polímeros/química , Polímeros/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Substância Negra/metabolismo , Ubiquitina/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
12.
Neuron ; 44(6): 899-901, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15603730

RESUMO

Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, are the major cause of early-onset Parkinson's disease (PD). In this issue of Neuron, Kalia et al. show that the bcl-2-associated athanogene 5 (BAG5) enhances dopamine neuron death in an in vivo model of PD through inhibiting the E3 ligase activity of parkin and the chaperone activity of Hsp70.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo
13.
Sci Rep ; 7: 44154, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287127

RESUMO

Tyrosine hydroxylase (TH) is a rate-limiting step enzyme in the synthesis of catecholamines. Catecholamines function both as hormone and neurotransmitters in the peripheral and central nervous systems, therefore TH's expression and enzymatic activity is tightly regulated by various mechanisms. Several post-translational modifications have been shown to regulate TH's enzymatic activity such as phosphorylation, nitration and S-glutathionylation. While phosphorylation at N-terminal of TH can activate its enzymatic activity, nitration and S-glutathionylation can inactivate TH. In this study, we found that TH can also be S-nitrosylated by nitric oxide (NO). S-nitrosylation is a reversible modification of cysteine (cys) residue in protein and is known to be an emerging signaling mechanism mediated by NO. We found that TH can be S-nitrosylated at cys 279 and TH S-nitrosylation enhances its enzymatic activity both in vitro and in vivo. These results provide a novel mechanism of how NO can modulate TH's enzymatic activity through S-nitrosylation.


Assuntos
Óxido Nítrico/química , Tirosina 3-Mono-Oxigenase/química , Células HEK293 , Humanos , Óxido Nítrico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
J Neurosci ; 25(8): 2002-9, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15728840

RESUMO

It is widely accepted that the familial Parkinson's disease (PD)-linked gene product, parkin, functions as a ubiquitin ligase involved in protein turnover via the ubiquitin-proteasome system. Substrates ubiquitinated by parkin are hence thought to be destined for proteasomal degradation. Because we demonstrated previously that parkin interacts with and ubiquitinates synphilin-1, we initially expected synphilin-1 degradation to be enhanced in the presence of parkin. Contrary to our expectation, we found that synphilin-1 is normally ubiquitinated by parkin in a nonclassical, proteasomal-independent manner that involves lysine 63 (K63)-linked polyubiquitin chain formation. Parkin-mediated degradation of synphilin-1 occurs appreciably only at an unusually high parkin to synphilin-1 expression ratio or when primed for lysine 48 (K48)-linked ubiquitination. In addition we found that parkin-mediated ubiquitination of proteins within Lewy-body-like inclusions formed by the coexpression of synphilin-1, alpha-synuclein, and parkin occurs predominantly via K63 linkages and that the formation of these inclusions is enhanced by K63-linked ubiquitination. Our results suggest that parkin is a dual-function ubiquitin ligase and that K63-linked ubiquitination of synphilin-1 by parkin may be involved in the formation of Lewy body inclusions associated with PD.


Assuntos
Proteínas de Transporte/metabolismo , Corpos de Lewy/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Proteínas de Transporte/genética , Catálise , Linhagem Celular , Expressão Gênica , Humanos , Rim , Lisina/química , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sinucleínas , Transfecção , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína
15.
J Neurosci ; 25(35): 7968-78, 2005 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16135753

RESUMO

Autosomal-recessive juvenile parkinsonism (AR-JP) is caused by loss-of-function mutations of the parkin gene. Parkin, a RING-type E3 ubiquitin ligase, is responsible for the ubiquitination and degradation of substrate proteins that are important in the survival of dopamine neurons in Parkinson's disease (PD). Accordingly, the abnormal accumulation of neurotoxic parkin substrates attributable to loss of parkin function may be the cause of neurodegeneration in parkin-related parkinsonism. We evaluated the known parkin substrates identified to date in parkin null mice to determine whether the absence of parkin results in accumulation of these substrates. Here we show that only the aminoacyl-tRNA synthetase cofactor p38 is upregulated in the ventral midbrain/hindbrain of both young and old parkin null mice. Consistent with upregulation in parkin knock-out mice, brains of AR-JP and idiopathic PD and diffuse Lewy body disease also exhibit increased level of p38. In addition, p38 interacts with parkin and parkin ubiquitinates and targets p38 for degradation. Furthermore, overexpression of p38 induces cell death that increases with tumor necrosis factor-alpha treatment and parkin blocks the pro-cell death effect of p38, whereas the R42P, familial-linked mutant of parkin, fails to rescue cell death. We further show that adenovirus-mediated overexpression of p38 in the substantia nigra in mice leads to loss of dopaminergic neurons. Together, our study represents a major advance in our understanding of parkin function, because it clearly identifies p38 as an important authentic pathophysiologic substrate of parkin. Moreover, these results have important implications for understanding the molecular mechanisms of neurodegeneration in PD.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Catecolaminas/fisiologia , Coenzimas/biossíntese , Coenzimas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Aminoacil-tRNA Sintetases/biossíntese , Aminoacil-tRNA Sintetases/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catecolaminas/biossíntese , Catecolaminas/genética , Morte Celular/fisiologia , Linhagem Celular Tumoral , Coenzimas/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Especificidade por Substrato/fisiologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
16.
Neurosignals ; 15(6): 307-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17901712

RESUMO

Nitric oxide (NO) is an important signaling molecule that controls a wide range of biological processes. One of the signaling mechanisms of NO is through the S-nitrosylation of cysteine residues on proteins. S-nitrosylation is now regarded as an important redox signaling mechanism in the regulation of different cellular and physiological functions. However, deregulation of S-nitrosylation has also been linked to various human diseases such as neurodegenerative disorders. Nitrosative stress has long been considered as a major mediator in the development of neurodegeneration, but the molecular mechanism of how NO can contribute to neurodegeneration is not completely clear. Early studies suggested that nitration of proteins, which can induce protein aggregation might contribute to the neurodegenerative process. However, several recent studies suggest that S-nitrosylation of proteins that are important for neuronal survival contributes substantially in the development of various neurodegenerative disorders. Thus, in-depth understanding of the mechanism of neurodegeneration in relation to S-nitrosylation will be critical for the development of therapeutic treatment against these neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/fisiologia , Conformação Proteica , Motivos de Aminoácidos , Animais , GMP Cíclico/fisiologia , Cisteína/química , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Dobramento de Proteína , Receptores de N-Metil-D-Aspartato/fisiologia , S-Nitrosoglutationa/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Transcrição Gênica/fisiologia
17.
Methods Enzymol ; 396: 139-50, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16291229

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by impairment in motor function. PD is mostly sporadic, but rare familial cases are also found. The exact pathogenic mechanism is not fully understood, but both genetic and environmental factors are known to be important contributors. In particular, oxidative stress mediated through nitric oxide (NO) is believed to be a prime suspect in the development of PD. NO can exert its effect by modifying different biological molecules, and one of these modifications is through S-nitrosylation. Because of the liable nature of S-nitrosylation, a number of methods are often used to study this modification. We have successfully employed some of these methods and showed that a familial related protein, parkin, can be S-nitrosylated and provide a common pathogenic mechanism for sporadic and familial PD.


Assuntos
Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Biotina/química , Humanos , Medições Luminescentes , Espectrometria de Massas , Nitrosação , Estresse Oxidativo , Fotólise
18.
Methods Mol Biol ; 1292: 195-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25804757

RESUMO

Parkinson's disease (PD) is marked by a selective degeneration of dopaminergic neurons in the brain stem and it is the second most common neurodegenerative disorder. The pathogenic mechanism of PD is not completely known but it is believed that oxidative stress involving the imbalance of nitric oxide (NO) signaling is involved. Recent studies have suggested that NO, through the modification of protein's cysteine residues can contribute to the pathogenesis of PD. This NO modification, designated as S-nitrosylation, is emerging as an important signaling mechanism that regulates increasing number of cellular processes such as vesicle trafficking, receptor mediated signal transduction, gene transcription, and cell death. In our studies, we found that increased nitrosative stress promotes the S-nitrosylation of neuroprotective proteins and compromises their function which contributes to the development of PD. One of the obstacles in studying S-nitrosylation signaling is how to detect this modification in biological samples. Here, two simple and commonly used methods in detecting S-nitrosylated proteins are introduced for the study of this NO signaling mechanism.


Assuntos
Doença de Parkinson/metabolismo , Animais , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia
19.
J Neurol ; 250 Suppl 3: III15-24, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14579120

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Recent advances in genetics and pathophysiology have led to new insights into the pathogenesis of PD. Ten loci have been linked to hereditary PD. Mutations in alpha-synuclein and ubiquitin carboxy hydrolase L1 (UchL1) cause autosomal dominant PD and mutations in parkin and DJ-1 cause autosomal recessive PD. alpha-Synuclein has emerged as an important protein in the pathogenesis of PD, as it appears to be the major structural component of Lewy bodies and its accumulation/aggregation seems to play a prominent role in sporadic PD. Mutations in parkin are the most common cause of hereditary PD, and mutations in parkin are thought to lead to a loss of parkin's ubiquitin E3 ligase activity. Derangements in parkin function as well as mutations in UCH-L1 fit with the notion that derangements in the ubiquitin proteasomal pathway (UPP) may play important roles in the demise of dopamine neurons in PD. DJ-1 is a protein of unknown function that is linked to autosomal recessive PD. Oxidative stress and impairment in mitochondrial complex I activity are important in sporadic PD, and there is emerging interest in the role of herbicides, fungicides and insecticides that inhibit mitochondrial complex I activity and their role in contributing to the development of PD. These important findings serve as the foundation for discovering new pathways that may lead to the development of new therapies for PD.


Assuntos
Doença de Parkinson/genética , Animais , Exposição Ambiental , Humanos , Corpos de Lewy/genética , Corpos de Lewy/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/patologia , Sinucleínas , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína
20.
PLoS One ; 7(6): e38545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701661

RESUMO

α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.


Assuntos
Corpos de Lewy/genética , Modelos Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Cromatografia em Gel , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Mutação/genética , Peptídeos/metabolismo , Plasmídeos/genética , Polimerização , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA