Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917452

RESUMO

Due to the increasing incidence of malignant gliomas, particularly glioblastoma multiforme (GBM), a simple and reliable GBM diagnosis is needed to screen early the death-threaten patients. This study aimed to identify a protein that can be used to discriminate GBM from low-grade astrocytoma and elucidate further that it has a functional role during malignant glioma progressions. To identify proteins that display low or no expression in low-grade astrocytoma but elevated levels in GBM, glycoprotein fibronectin (FN) was particularly examined according to the mining of the Human Protein Atlas. Web-based open megadata minings revealed that FN was mainly mutated in the cBio Cancer Genomic Portal but dominantly overexpressed in the ONCOMINE (a cancer microarray database and integrated data-mining platform) in distinct tumor types. Furthermore, numerous different cancer patients with high FN indeed exhibited a poor prognosis in the PrognoScan mining, indicating that FN involves in tumor malignancy. To investigate further the significance of FN expression in glioma progression, tumor specimens from five malignant gliomas with recurrences that received at least two surgeries were enrolled and examined. The immunohistochemical staining showed that FN expression indeed determined the distinct progressions of malignant gliomas. Furthermore, the expression of vimentin (VIM), a mesenchymal protein that is strongly expressed in malignant cancers, was similar to the FN pattern. Moreover, the level of epithelial-mesenchymal transition (EMT) inducer transforming growth factor-beta (TGF-ß) was almost recapitulated with the FN expression. Together, this study identifies a protein FN that can be used to diagnose GBM from low-grade astrocytoma; moreover, its expression functionally determines the malignant glioma progressions via TGF-ß-induced EMT pathway.


Assuntos
Neoplasias Encefálicas/metabolismo , Fibronectinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Proteínas de Neoplasias/biossíntese , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Bases de Dados de Ácidos Nucleicos , Feminino , Fibronectinas/genética , Glioblastoma/diagnóstico , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Prognóstico , Fator de Crescimento Transformador beta/genética
2.
ACS Appl Mater Interfaces ; 14(50): 55873-55885, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475581

RESUMO

Developing an effective host for highly efficient full-color electroluminescence devices through a solution-process is still a challenge at present. Here, we use the σ-π conjugated polymer, poly(acridan grafted biphenyl germanium) P(DMAC-Ge), having the highest triplet energy (ET) 2.86 eV among conjugated polymers as the host in sky-blue phosphorescence, TADFs (blue (B), green (G), and red (R)), and hybrid white (W) PLEDs. Upon doping with a sky-blue phosphor-emitter (Firpic), the resulting device gives the high EQEmax 19.7% with Bmax 24,918 cd/m2. The Ge-containing polymer backbone can provide as a channel for electron transport and charge trap into the guest as manifested by the electroluminescence dynamics. Further introducing the bipolar material DCzPPy as cohost, the devices with a sky-blue phosphor (Firpic) and each of the TADF-guests─B (DMAC-TRZ), G (DACT-II), and R (TPA-DCPP) in the EML─achieve the high maximum EQEs as 19.7%, 19.4%, 21.5% and 3.82% with the emission peaks at 470, 485, 508, and 630 nm, respectively. As the three guests (DMAC-TRZ, Ir-O, Ir-R) are doped together into the emitting layer, we obtain a TADF-phosphor (T-P) hybrid white PLED giving a record-high EQE 22.5% among the solution processed hybrid OLED with CIE (0.34, 0.40) and Bmax 28,945 cd/m2. These results manifest that P(DMAC-Ge) is a potential polymer host for full-color TADF and hybrid white light PLEDs with high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA