Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452761

RESUMO

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucarióticas/metabolismo , Redes Neurais de Computação , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 170(5): 889-898.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803729

RESUMO

Eukaryotic promoter regions are frequently divergently transcribed in vivo, but it is unknown whether the resultant antisense RNAs are a mechanistic by-product of RNA polymerase II (Pol II) transcription or biologically meaningful. Here, we use a functional evolutionary approach that involves nascent transcript mapping in S. cerevisiae strains containing foreign yeast DNA. Promoter regions in foreign environments lose the directionality they have in their native species. Strikingly, fortuitous promoter regions arising in foreign DNA produce equal transcription in both directions, indicating that divergent transcription is a mechanistic feature that does not imply a function for these transcripts. Fortuitous promoter regions arising during evolution promote bidirectional transcription and over time are purged through mutation or retained to enable new functionality. Similarly, human transcription is more bidirectional at newly evolved enhancers and promoter regions. Thus, promoter regions are intrinsically bidirectional and are shaped by evolution to bias transcription toward coding versus non-coding RNAs.


Assuntos
Evolução Molecular , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Transcrição Gênica , Elementos Facilitadores Genéticos , Humanos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/classificação
3.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38503286

RESUMO

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Assuntos
Mitocôndrias , Ribossomos Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Fosforilação Oxidativa , Proteínas Mitocondriais/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
4.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38964322

RESUMO

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Assuntos
Núcleo Celular , Cromatina , RNA Helicases DEAD-box , RNA Mensageiro , Animais , Humanos , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidade de RNA , Transporte Ativo do Núcleo Celular , Polirribossomos/metabolismo , Polirribossomos/genética , Aprendizado de Máquina , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Exossomos/metabolismo , Exossomos/genética
5.
Cell ; 161(3): 541-554, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910208

RESUMO

Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.


Assuntos
RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Processamento Alternativo , Elementos Facilitadores Genéticos , Éxons , Células HeLa , Humanos , Regiões Promotoras Genéticas , RNA Antissenso/genética , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Nat Rev Mol Cell Biol ; 18(4): 263-273, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28248323

RESUMO

The carboxy-terminal domain (CTD) extends from the largest subunit of RNA polymerase II (Pol II) as a long, repetitive and largely unstructured polypeptide chain. Throughout the transcription process, the CTD is dynamically modified by post-translational modifications, many of which facilitate or hinder the recruitment of key regulatory factors of Pol II that collectively constitute the 'CTD code'. Recent studies have revealed how the physicochemical properties of the CTD promote phase separation in the presence of other low-complexity domains. Here, we discuss the intricacies of the CTD code and how the newly characterized physicochemical properties of the CTD expand the function of the CTD beyond the code.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica , Regulação da Expressão Gênica , Humanos , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/genética
7.
Cell ; 157(7): 1712-23, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949978

RESUMO

In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI/SNF, facilitated divergent transcription by promoting rapid nucleosome turnover. We propose that these chromatin-mediated effects control divergent transcription initiation, complementing downstream pathways linked to early termination and degradation of the noncoding RNAs.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Fúngico/genética , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Terminação da Transcrição Genética , Transcrição Gênica
8.
Genes Dev ; 35(9-10): 698-712, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888559

RESUMO

Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/genética , Mutação , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Mol Cell ; 77(5): 985-998.e8, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31839405

RESUMO

Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Íntrons , Células K562 , Cinética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
10.
Mol Cell ; 73(6): 1087-1088, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901560

RESUMO

In this issue of Molecular Cell, Lu et al. (2019) analyze the role of the length and sequence complexity of the RNA polymerase II unstructured C-terminal domain in animal viability, development, and the dynamics of RNA polymerase II in vivo.


Assuntos
RNA Polimerase III , RNA Polimerase II , Animais , Consenso , Drosophila
11.
Hum Mol Genet ; 33(R1): R34-R41, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779776

RESUMO

In human cells, the nuclear and mitochondrial genomes engage in a complex interplay to produce dual-encoded oxidative phosphorylation (OXPHOS) complexes. The coordination of these dynamic gene expression processes is essential for producing matched amounts of OXPHOS protein subunits. This review focuses on our current understanding of the mitochondrial central dogma rates, highlighting the striking differences in gene expression rates between mitochondrial and nuclear genes. We synthesize a coherent model of mitochondrial gene expression kinetics, highlighting the emerging principles and emphasizing where more precise measurements would be beneficial. Such an understanding is pivotal for grasping the unique aspects of mitochondrial function and its role in cellular energetics, and it has profound implications for aging, metabolic disorders, and neurodegenerative diseases.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Genoma Mitocondrial , Metabolismo Energético/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Envelhecimento/genética , Envelhecimento/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
12.
Annu Rev Genet ; 52: 511-533, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30230928

RESUMO

Together, the nuclear and mitochondrial genomes encode the oxidative phosphorylation (OXPHOS) complexes that reside in the mitochondrial inner membrane and enable aerobic life. Mitochondria maintain their own genome that is expressed and regulated by factors distinct from their nuclear counterparts. For optimal function, the cell must ensure proper stoichiometric production of OXPHOS subunits by coordinating two physically separated and evolutionarily distinct gene expression systems. Here, we review our current understanding of mitonuclear coregulation primarily at the levels of transcription and translation. Additionally, we discuss other levels of coregulation that may exist but remain largely unexplored, including mRNA modification and stability and posttranslational protein degradation.


Assuntos
Evolução Biológica , Genoma Mitocondrial/genética , Genoma/genética , Fosforilação Oxidativa , Núcleo Celular/genética , Mitocôndrias/química , Mitocôndrias/genética , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA/genética , Transcrição Gênica
13.
Mol Cell ; 72(4): 687-699.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318445

RESUMO

Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.


Assuntos
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Iniciação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiologia , Proteínas Nucleares , Nucleossomos , Fatores de Alongamento de Peptídeos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
14.
Mol Cell ; 70(2): 312-326.e7, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656924

RESUMO

Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions.


Assuntos
DNA Helicases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Fúngica da Expressão Gênica , RNA Helicases/metabolismo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , RNA não Traduzido/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminação da Transcrição Genética , DNA Helicases/genética , Viabilidade Microbiana , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Helicases/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
15.
Mol Cell ; 65(1): 1-2, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28061329

RESUMO

Thousands of long noncoding RNAs (lncRNAs) have been annotated, yet their functions remain unclear. Recent studies-including Schlackow et al. (2017) in this issue of Molecular Cell-using orthogonal methods investigated the expression and functions of lncRNAs, resulting in deeper appreciation for the salient differences between lncRNAs and mRNAs and the roles lncRNAs serve.


Assuntos
Genômica , RNA Longo não Codificante , RNA Mensageiro
16.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28673542

RESUMO

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Leucêmica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Complexos Multiproteicos , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidade Proteica , Proteólise , RNA Polimerase II/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção , Ubiquitina-Proteína Ligases , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biol Chem ; 299(11): 105289, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748648

RESUMO

Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.


Assuntos
Regiões 3' não Traduzidas , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcrição Gênica , Regiões 3' não Traduzidas/genética , Poliadenilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 58(2): 339-52, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25866248

RESUMO

Individual mammalian cells exhibit large variability in cellular volume, even with the same absolute DNA content, and so must compensate for differences in DNA concentration in order to maintain constant concentration of gene expression products. Using single-molecule counting and computational image analysis, we show that transcript abundance correlates with cellular volume at the single-cell level due to increased global transcription in larger cells. Cell fusion experiments establish that increased cellular content itself can directly increase transcription. Quantitative analysis shows that this mechanism measures the ratio of cellular volume to DNA content, most likely through sequestration of a transcriptional factor to DNA. Analysis of transcriptional bursts reveals a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S phase. Our results provide a framework for quantitatively understanding the relationships among DNA content, cell size, and gene expression variability in single cells.


Assuntos
Dosagem de Genes , Hibridização in Situ Fluorescente/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Células Cultivadas , Fibroblastos/citologia , Prepúcio do Pênis/citologia , Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Fase S
20.
Nature ; 533(7604): 499-503, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225121

RESUMO

Oxidative phosphorylation (OXPHOS) is a vital process for energy generation, and is carried out by complexes within the mitochondria. OXPHOS complexes pose a unique challenge for cells because their subunits are encoded on both the nuclear and the mitochondrial genomes. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to mitochondria, so the co-regulation of OXPHOS genes remains largely unexplored. Here we monitor mitochondrial and nuclear gene expression in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. We show that nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, mitochondrial and cytosolic translation are rapidly, dynamically and synchronously regulated. Furthermore, cytosolic translation processes control mitochondrial translation unidirectionally. Thus, the nuclear genome coordinates mitochondrial and cytosolic translation to orchestrate the timely synthesis of OXPHOS complexes, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for studies of global gene regulation in mitochondria.


Assuntos
Núcleo Celular/genética , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/biossíntese , Fosforilação Oxidativa , Biossíntese de Proteínas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Genes Mitocondriais/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Biogênese de Organelas , Proteoma/biossíntese , Proteoma/genética , RNA Fúngico/análise , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA