Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(3): 1282-1291, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27272953

RESUMO

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient-poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant-soil elemental composition and stoichiometry.


Assuntos
Espécies Introduzidas , Nitrogênio , Fósforo , Plantas , Ecossistema , Folhas de Planta , Solo
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190510, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892735

RESUMO

Extreme weather increases the risk of large-scale crop failure. The mechanisms involved are complex and intertwined, hence undermining the identification of simple adaptation levers to help improve the resilience of agricultural production. Based on more than 82 000 yield data reported at the regional level in 17 European countries, we assess how climate affected the yields of nine crop species. Using machine learning models, we analyzed historical yield data since 1901 and then focus on 2018, which has experienced a multiplicity and a diversity of atypical extreme climatic conditions. Machine learning models explain up to 65% of historical yield anomalies. We find that both extremes in temperature and precipitation are associated with negative yield anomalies, but with varying impacts in different parts of Europe. In 2018, Northern and Eastern Europe experienced multiple and simultaneous crop failures-among the highest observed in recent decades. These yield losses were associated with extremely low rainfalls in combination with high temperatures between March and August 2018. However, the higher than usual yields recorded in Southern Europe-caused by favourable spring rainfall conditions-nearly offset the large decrease in Northern European crop production. Our results outline the importance of considering single and compound climate extremes to analyse the causes of yield losses in Europe. We found no clear upward or downward trend in the frequency of extreme yield losses for any of the considered crops between 1990 and 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Mudança Climática , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Clima Extremo , Europa (Continente) , Especificidade da Espécie
3.
Nat Commun ; 11(1): 355, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953430

RESUMO

Global fish production (capture and aquaculture) has increased quickly, which has altered global flows of phosphorus (P). Here we show that in 2016, [Formula: see text] Tg P yr-1 (mean and interquartile range) was applied in aquaculture to increase fish production; while [Formula: see text] Tg P yr-1 was removed from aquatic systems by fish harvesting. Between 1950 and 1986, P from fish production went from aquatic towards the land-human systems. This landward P peaked at 0.54 Tg P yr-1, representing a large but overlooked P flux that might benefit land activities under P scarcity. After 1986, the landward P flux decreased significantly, and became negative around 2004, meaning that humans spend more P to produce fish than harvest P in fish capture. An idealized pathway to return to the balanced anthropogenic P flow would require the mean phosphorus use efficiency (the ratio of harvested to input P) of aquaculture to be increased from a current value of 20% to at least 48% by 2050 - a big challenge.


Assuntos
Produtos Agrícolas , Pesqueiros , Fósforo , Poluentes Químicos da Água/análise , Animais , Bases de Dados Factuais , Ecologia , Peixes , Água Doce/química , História do Século XX , História do Século XXI , Humanos , Alimentos Marinhos , Poluentes Químicos da Água/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA