Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 257: 119373, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852831

RESUMO

Mining operations generate sediment erosion rates above those of natural landscapes, causing persistent contamination of floodplains. Riparian vegetation in mine-impacted river catchments plays a key role in the storage/remobilization of metal contaminants. Mercury (Hg) pollution from mining is a global environmental challenge. This study provides an integrative assessment of Hg storage in riparian trees and soils along the Paglia River (Italy) which drains the abandoned Monte Amiata Hg mining district, the 3rd former Hg producer worldwide, to characterize their role as potential secondary Hg source to the atmosphere in case of wildfire or upon anthropic utilization as biomass. In riparian trees and nearby soils Hg ranged between 0.7 and 59.9 µg/kg and 2.2 and 52.8 mg/kg respectively. In trees Hg concentrations were below 100 µg/kg, a recommended Hg limit for the quality of solid biofuels. Commercially, Hg contents in trees have little impact on the value of the locally harvested biomass and pose no risk to human health, although higher values (195-738 µg/kg) were occasionally found. In case of wildfire, up to 1.4*10-3 kg Hg/ha could be released from trees and 27 kg Hg/ha from soil in the area, resulting in an environmentally significant Hg pollution source. Data constrained the contribution of riparian trees to the biogeochemical cycling of Hg highlighting their role in management and restoration plans of river catchments affected by not-remediable Hg contamination. In polluted river catchments worldwide riparian trees represent potential sustainable resources for the mitigation of dispersion of Hg in the ecosystem, considering i) their Hg storage capacity, ii) their potential to be used for local energy production (e.g. wood-chips) through the cultivation and harvesting of biomasses and, iii) their role in limiting soil erosion from riparian polluted riverbanks, probably representing the best pragmatic choice to minimize the transport of toxic elements to the sea.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Mercúrio , Mineração , Rios , Árvores , Mercúrio/análise , Rios/química , Recuperação e Remediação Ambiental/métodos , Itália , Poluentes Químicos da Água/análise , Poluentes do Solo/análise
2.
J Hum Evol ; 133: 32-60, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358183

RESUMO

A paleosurface with a concentration of wooden-, bone-, and stone-tools interspersed among an accumulation of fossil bones, largely belonging to the straight-tusked elephant Palaeoloxodon antiquus, was found at the bottom of a pool, fed by hot springs, that was excavated at Poggetti Vecchi, near Grosseto (Tuscany, Italy). The site is radiometrically dated to the late Middle Pleistocene, around 171,000 years BP. Notable is the association of the artifacts with the elephant bones, and in particular the presence of digging sticks made from boxwood (Buxus sp.). Although stone tools show evidence of use mainly on animal tissues, indicating some form of interaction between hominins and animals, the precise use of the sticks is unclear. Here we discuss about the role played by the hominins at the site: paleobiological and taphonomic evidence indicates that the elephants died by a natural cause and were butchered soon after their death. The associated paleontological and archeological evidence from this site provides fresh insights into the behavior of early Neanderthals in Central Italy. The discovery of Poggetti Vecchi shows how opportunistically flexible Neanderthals were in response to environmental contingencies.


Assuntos
Elefantes , Cadeia Alimentar , Homem de Neandertal , Comportamento de Utilização de Ferramentas , Animais , Arqueologia , Fósseis , Itália , Paleontologia
3.
Sci Total Environ ; : 177113, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39490839

RESUMO

Fluvial ecosystems are among the main drivers of microparticles (MPC), in the form of both synthetic polymers (i.e. microplastics; MPs), and natural-based textile fibers (MFTEX) to the seas. A wide dimensional range of MPC (5 to 5000 µm, hereafter MPCTOT) were investigated for the first time in the Arno River waters, one of the principal rivers of Central Italy, crossing a highly anthropized landscape. Fluxes of MPCTOT discharging to the Mediterranean Sea, one the most polluted Sea worldwide, were estimated as well. A specific sampling and analytical protocol was set up to distinguish between microplastics (MPs) and natural-based textile fibers (MFTEX) contribution for MPC larger than 60 µm (MPC>60), and investigate MPC smaller than 60 µm (MPC<60) as well. Results suggest extreme MPCTOT contamination all along the river (up to 6 × 104 particles/L), strongly driven by MPC<60, which account for >99 % of total particles found and whose abundance increases inversely with particle size. The MPC>60 fraction (<0.5 % of MPCTOT) highlighted a predominance (76 % of the total) of MFTEX and synthetic polymers microfibers (e.g., PET) suggesting strong contributions from laundry effluents. Specifically, MFTEX represent around 70 % of all MPC>60. The metropolitan area of Florence was identified as an MPCTOT hotspot, as a consequence of the intense urbanization and possibly of over-tourism phenomenon affecting the city. The Arno River discharges approximately 4.6 × 1015 MPCTOT annually to the Mediterranean Sea. Fluxes are highly dependent on the seasonality, with a MPCTOT delivery of 2.4 × 1013 particles/day and 1.2 × 1012 particles/day during wet and dry season, respectively. The total mass of discharged MPCTOT is estimated at about 29 tons/year (t/y); the MPC>60 fraction amounts to about 8 t/y, and MFTEX to about 1 t/y.

4.
Environ Sci Pollut Res Int ; 30(59): 124232-124244, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999838

RESUMO

Biomonitoring studies are often employed to track airborne pollutants both in outdoor and indoor environments. In this study, the mercury (Hg) sorption by three biomonitors, i.e., Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss, was investigated in controlled (indoor) conditions. In comparison to outdoor environments, controlled conditions offer the opportunity to investigate more in detail the variables (humidity, temperature, pollutants speciation, etc.) that control Hg uptake. The biomonitors were exposed in two distinct periods of the year for 2 and 12 months respectively, in the halls of the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), which are polluted by Hg, due to past plant sample treatments. The Hg sorption trend was monitored every 3 weeks by recording: (i) the Hg content in the substrata, (ii) gaseous elemental mercury (GEM) concentrations in the exposition halls, (iii) temperature, (iv) humidity, and (v) particulate matter (PM) concentrations. At the end of the experiment, Hg concentrations in the biomonitors range from 1130 ± 201 to 293 ± 45 µg kg-1 (max-min) in barks, from 3470 ± 571 to 648 ± 40 µg kg-1 in lichens, and from 3052 ± 483 to 750 ± 127 µg kg-1 in mosses. All the biomonitors showed the highest Hg accumulation after the first 3 weeks of exposure. Mercury concentrations increased over time showing a continuous accumulation during the experiments. The biomonitors demonstrated different Hg accumulation trends in response to GEM concentrations and to the different climatic conditions (temperature and humidity) of the Herbarium halls. Barks strictly reflected the gaseous Hg pollution, while lichen and moss accumulation was also influenced by the climatic conditions of the indoor environment. Mercury bound to PM seemed to provide a negligible contribution to the biomonitors final uptake.


Assuntos
Poluentes Atmosféricos , Briófitas , Poluentes Ambientais , Líquens , Mercúrio , Mercúrio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado , Itália
5.
Toxics ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203704

RESUMO

Museums air quality can be negatively affected by treatments with heavy metals compounds employed to prevent pest infestations. Among these, the past use of mercury dichloride (HgCl2) on herbaria artifacts currently produces high levels of indoor atmospheric gaseous mercury (Hg0) and possibly of particulate bound Hg (PBM), i.e., the particulate matter containing Hg. This study evaluates the PBM pollution in the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), characterizing the size range and chemical speciation with SEM-EDS microanalysis. The analysis of the total Hg concentration in the samples allowed to calculate the workers exposure risk to this pollutant. PBM is almost totally classifiable as fine particulate with a significant dimensional increase in a period of scarce attendance of the Herbarium rooms. The microanalysis indicates that Hg is essentially bound to S, highlighting the change of Hg speciation from the original association with Cl. The average Hg concentration reveals a potential health risk for workers as result of multiple Hg exposure pathways, mainly by ingestion. The study provides information for characterizing PBM pollution that could affect a workplace atmosphere and a useful basis to evaluate and correctly design solution strategies to reduce the contamination levels and protect workers' health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA