Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(23): 5814-5821, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584091

RESUMO

Hematopoietic stem cells (HSCs) that sustain lifelong blood production are created during embryogenesis. They emerge from a specialized endothelial population, termed hemogenic endothelium (HE), located in the ventral wall of the dorsal aorta (DA). In Xenopus, we have been studying the gene regulatory networks (GRNs) required for the formation of HSCs, and critically found that the hemogenic potential is defined at an earlier time point when precursors to the DA express hematopoietic as well as endothelial genes, in the definitive hemangioblasts (DHs). The GRN for DH programming has been constructed and, here, we show that bone morphogenetic protein (BMP) signaling is essential for the initiation of this GRN. BMP2, -4, and -7 are the principal ligands expressed in the lineage forming the HE. To investigate the requirement and timing of all BMP signaling in HSC ontogeny, we have used a transgenic line, which inducibly expresses an inhibitor of BMP signaling, Noggin, as well as a chemical inhibitor of BMP receptors, DMH1, and described the inputs from BMP signaling into the DH GRN and the HE, as well as into primitive hematopoiesis. BMP signaling is required in at least three points in DH programming: first to initiate the DH GRN through gata2 expression, then for kdr expression to enable the DH to respond to vascular endothelial growth factor A (VEGFA) ligand from the somites, and finally for gata2 expression in the DA, but is dispensable for HE specification after hemangioblasts have been formed.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Linhagem da Célula , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/citologia , Animais , Animais Geneticamente Modificados , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Xenopus laevis
2.
PLoS Comput Biol ; 14(8): e1006077, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157169

RESUMO

The precise anatomical location of gene expression is an essential component of the study of gene function. For most model organisms this task is usually undertaken via visual inspection of gene expression images by interested researchers. Computational analysis of gene expression has been developed in several model organisms, notably in Drosophila which exhibits a uniform shape and outline in the early stages of development. Here we address the challenge of computational analysis of gene expression in Xenopus, where the range of developmental stages of interest encompasses a wide range of embryo size and shape. Embryos may have different orientation across images, and, in addition, embryos have a pigmented epidermis that can mask or confuse underlying gene expression. Here we report the development of a set of computational tools capable of processing large image sets with variable characteristics. These tools efficiently separate the Xenopus embryo from the background, separately identify both histochemically stained and naturally pigmented regions within the embryo, and can sort images from the same gene and developmental stage according to similarity of gene expression patterns without information about relative orientation. We tested these methods on a large, but highly redundant, collection of 33,289 in situ hybridization images, allowing us to select representative images of expression patterns at different embryo orientations. This has allowed us to put a much smaller subset of these images into the public domain in an effective manner. The 'isimage' module and the scripts developed are implemented in Python and freely available on https://pypi.python.org/pypi/isimage/.


Assuntos
Biologia Computacional/métodos , Curadoria de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Embrião não Mamífero/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ/métodos , Hibridização in Situ Fluorescente/métodos , Software , Transcriptoma , Xenopus laevis/embriologia
3.
Development ; 140(12): 2632-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23637333

RESUMO

The first haematopoietic stem cells share a common origin with the dorsal aorta and derive from putative adult haemangioblasts in the dorsal lateral plate (DLP) mesoderm. Here we show that the transcription factor (TF) stem cell leukaemia (Scl/Tal1) is crucial for development of these adult haemangioblasts in Xenopus and establish the regulatory cascade controlling its expression. We show that VEGFA produced in the somites is required to initiate adult haemangioblast programming in the adjacent DLP by establishing endogenous VEGFA signalling. This response depends on expression of the VEGF receptor Flk1, driven by Fli1 and Gata2. Scl activation requires synergy between this VEGFA-controlled pathway and a VEGFA-independent pathway controlled by Fli1, Gata2 and Etv2/Etsrp/ER71, which also drives expression of the Scl partner Lmo2. Thus, the two ETS factors Fli1 and Etv6, which drives the VEGFA expression in both somites and the DLP, sit at the top of the adult haemangioblast gene regulatory network (GRN). Furthermore, Gata2 is initially activated by Fli1 but later maintained by another ETS factor, Etv2. We also establish that Flk1 and Etv2 act independently in the two pathways to Scl activation. Thus, detailed temporal, epistatic measurements of key TFs and VEGFA plus its receptor have enabled us to build a Xenopus adult haemangioblast GRN.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hemangioblastos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Western Blotting , Linhagem da Célula , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Redes Reguladoras de Genes , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Morfolinos/administração & dosagem , Morfolinos/farmacologia , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Somitos/citologia , Somitos/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/sangue , Variante 6 da Proteína do Fator de Translocação ETS
4.
Blood Cells Mol Dis ; 51(4): 248-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23927967

RESUMO

Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Linhagem da Célula , Transdiferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese/fisiologia , Humanos , Mesoderma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Comput Biol ; 26(7): 719-725, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31140835

RESUMO

Blood is an example of a highly regenerative tissue and its regeneration depends on the presence of stem cells residing in the bone marrow in humans. A better understanding of how these stem cells are programmed would benefit their use in clinical practice and shed light on the mechanisms by which the unique properties of stem cells are established. Our approach is to delineate the gene regulatory networks (GRNs) that specify these cells during their development in the embryo, and we use the amphibian experimental model because a wealth of evidence shows that the mechanisms used are conserved in mammals including humans. Blood stem cells are made during the intraembryonic wave of hematopoiesis during embryonic development where they emerge from endothelial precursors in the floor of the dorsal aorta (DA). These cells are derived from lateral plate mesoderm and so we have focused on the subset of cells in the lateral plate mesoderm fated to become blood and endothelium known as definitive hemangioblasts. We have found that their programming results from the activities of vascular endothelial growth factor A (VEGFA) and bone morphogenetic protein (BMP) signaling and the inhibition by miRNA of transforming growth factor beta signaling. VEGFA is first generated in the somites adjacent to the lateral plate mesoderm, and one of the responses of the lateral plate mesoderm is to activate endogenous VEGFA expression. BMP has multiple inputs into the programming of these cells via the activation of the transcription factor (TF), Gata2, and of the VEGFA receptor. These actions culminate in the expression of the leukemia-associated TF, Scl/Tal1, which is essential for blood fate specification. The activity of VEGFA in driving endothelial development resides in the small isoform, but the medium and large isoforms are required to initiate the blood stem cell program in the floor of the DA. The expression of the small isoform is dependent on the blood TF with leukemia connections, Tel1/Etv6, whereas the larger isoforms depend on another transcription-associated factor with leukemia connections, Eto2, raising the possibility that the regulation of VEGFA expression may be the mode of action of these leukemic factors. The action of Tel1/Etv6 in directly activating VEGFA expression in the somites was unexpected because this TF had only been reported to repress transcription. Using chromatin immunoprecipitation technology, we were able to show that Tel1/Etv6 does indeed work by repressing the expression of a VEGFA repressor, FoxC3, but it also acts directly to activate VEGFA expression, working together with Klf4. Finally, we have also looked at the mesodermal population that gives rise to the earlier waves of hematopoiesis, which do not generate a stem cell. We find significant differences including differential use of TFs of the E-Twenty-Six (ETS) family. In conclusion, we have elucidated the GRN responsible for preparing the lateral mesoderm for blood stem cell production.


Assuntos
Sangue/metabolismo , Redes Reguladoras de Genes , Regeneração/genética , Animais , Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Nat Commun ; 10(1): 1083, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842454

RESUMO

VEGFA signaling controls physiological and pathological angiogenesis and hematopoiesis. Although many context-dependent signaling pathways downstream of VEGFA have been uncovered, vegfa transcriptional regulation in vivo remains unclear. Here, we show that the ETS transcription factor, Etv6, positively regulates vegfa expression during Xenopus blood stem cell development through multiple transcriptional inputs. In agreement with its established repressive functions, Etv6 directly inhibits expression of the repressor foxo3, to prevent Foxo3 from binding to and repressing the vegfa promoter. Etv6 also directly activates expression of the activator klf4; reflecting a genome-wide paucity in ETS-binding motifs in Etv6 genomic targets, Klf4 then recruits Etv6 to the vegfa promoter to activate its expression. These two mechanisms (double negative gate and feed-forward loop) are classic features of gene regulatory networks specifying cell fates. Thus, Etv6's dual function, as a transcriptional repressor and activator, controls a major signaling pathway involved in endothelial and blood development in vivo.


Assuntos
Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiologia , Animais , Embrião não Mamífero , Endotélio/embriologia , Endotélio/metabolismo , Proteína Forkhead Box O3/antagonistas & inibidores , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Morfolinos/genética , Oligonucleotídeos Antissenso/genética , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Somitos/embriologia , Somitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Variante 6 da Proteína do Fator de Translocação ETS
7.
FEBS Lett ; 590(22): 4002-4015, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27531714

RESUMO

Haematopoietic stem cells (HSCs) emerge from the haemogenic endothelium (HE) localised in the ventral wall of the embryonic dorsal aorta (DA). The HE generates HSCs through a process known as the endothelial to haematopoietic transition (EHT), which has been visualised in live embryos and is currently under intense study. However, EHT is the culmination of multiple programming events, which are as yet poorly understood, that take place before the specification of HE. A number of haematopoietic precursor cells have been described before the emergence of definitive HSCs, but only one haematovascular progenitor, the definitive haemangioblast (DH), gives rise to the DA, HE and HSCs. DHs emerge in the lateral plate mesoderm (LPM) and have a distinct origin and genetic programme compared to other, previously described haematovascular progenitors. Although DHs have so far only been established in Xenopus embryos, evidence for their existence in the LPM of mouse and chicken embryos is discussed here. We also review the current knowledge of the origins, lineage relationships, genetic programming and differentiation of the DHs that leads to the generation of HSCs. Importantly, we discuss the significance of the gene regulatory network (GRN) that controls the programming of DHs, a better understanding of which may aid in the establishment of protocols for the de novo generation of HSCs in vitro.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Hematopoéticas , Mesoderma/crescimento & desenvolvimento , Xenopus laevis/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Galinha , Embrião de Mamíferos , Embrião não Mamífero , Hemangioblastos/metabolismo , Mesoderma/embriologia , Camundongos , Xenopus laevis/embriologia
8.
Methods Mol Med ; 105: 123-36, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15492392

RESUMO

The fates of lineage labeled hematopoietic precursor populations in Xenopus embryos are followed by use of in situ hybridization, looking for overlap between lineage labeled cells and in situ probes specific for known cell populations or states of differentiation. By coinjection of dominant interfering constructs, it also is possible to define the environmental cues or signals required for specification and/or maintenance of the hematopoietic program at different times and locations in the early embryo. As a lineage trace, we use beta-galactosidase, which is injected as in vitro synthesized ribonucleic acid (RNA) in to Xenopus embryos at early cleavage stages. Because the interfering constructs we use also are in the form of injected RNA, the use of beta-galactosidase RNA as a lineage trace assures accurate determination of the cells expressing the dominant negative construct. Embryos are cultured to desired developmental stages, fixed briefly and processed for the beta-galactosidase reaction. Embryos are then analyzed by whole mount in situ hybridization, embedded in wax, and sectioned. Alternatively, after the beta-galactosidase reaction, embryos can be fixed long term in paraformaldehyde, mounted in wax, sectioned, and probed by in situ hybridization directly on sections.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hematopoese/genética , Xenopus
9.
Exp Hematol ; 42(8): 669-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24950425

RESUMO

Hematopoietic stem cells (HSCs) sustain blood production throughout life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly because of the poor mechanistic understanding of their programming. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the midgestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialized endothelium, the hemogenic endothelium, localized in the ventral wall of the DA through an evolutionarily conserved process called the endothelial-to-hematopoietic transition. However, the endothelial-to-hematopoietic transition represents one of the last steps in HSC creation, and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Because of their ready availability and external development, zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whereas the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.


Assuntos
Hematopoese , Animais , Diferenciação Celular , Células Endoteliais/citologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Xenopus/embriologia , Peixe-Zebra/embriologia
10.
Dev Cell ; 26(3): 237-49, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23911199

RESUMO

Hematopoietic stem cells (HSCs) emerge during embryogenesis from hemogenic endothelium, but it remains unclear how the HSC lineage is initially established from mesoderm during ontogeny. In Xenopus, the definitive hemangioblast precursors of the HSC lineage have been identified in dorsal lateral plate (DLP) mesoderm, and a transcriptional gene regulatory network (GRN) controlling hemangioblast programming has been elucidated. Herein, we identify an essential role for microRNAs (miRNAs) in establishing the mesodermal lineage leading to both HSC emergence and vasculogenesis and determine that a single miRNA, miR-142-3p, is primarily responsible for initiation of definitive hemangioblast specification. miR-142-3p forms a double-negative gate unlocking entry into the hemangioblast program, in part by inhibiting TGFß signaling. Our results table miR-142-3p as a master regulator of HSC lineage specification, sitting at the apex of the hierarchy programming the adult hemangioblast, thus illustrating that miRNAs can act as instructive determinants of cell fate during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , MicroRNAs/fisiologia , Neovascularização Fisiológica/genética , Animais , Diferenciação Celular , Linhagem da Célula/fisiologia , Desenvolvimento Embrionário/fisiologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Morfolinos , Proteínas/genética , Proteínas de Ligação a RNA , Xenopus laevis
11.
Dev Cell ; 24(2): 144-58, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23318133

RESUMO

VEGFA signaling is critical for endothelial and hematopoietic stem cell (HSC) specification. However, blood defects resulting from perturbation of the VEGFA pathway are always accompanied by impaired vascular/arterial development. Because HSCs derive from arterial cells, it is unclear whether VEGFA directly contributes to HSC specification. This is an important question for our understanding of how HSCs are formed and for developing their production in vitro. Through knockdown of the regulator ETO2 in embryogenesis, we report a specific decrease in expression of medium/long Vegfa isoforms in somites. This leads to absence of Notch1 expression and failure of HSC specification in the dorsal aorta (DA), independently of vessel formation and arterial specification. Vegfa hypomorphs and isoform-specific (medium/long) morphants not only recapitulate this phenotype but also demonstrate that VEGFA short isoform is sufficient for DA development. Therefore, sequential, isoform-specific VEGFA signaling successively induces the endothelial, arterial, and HSC programs in the DA.


Assuntos
Aorta/embriologia , Artérias/embriologia , Proteínas Correpressoras/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Aorta/metabolismo , Artérias/metabolismo , Proteínas Correpressoras/genética , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Morfolinos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Fatores de Transcrição , Transcrição Gênica , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
12.
Int J Dev Biol ; 54(6-7): 1139-49, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20711991

RESUMO

Blood development has been highly conserved during evolution. Hematopoietic cells in amphibian and fish embryos, as in mammalian embryos, emerge and progressively differentiate in several locations. Hematopoiesis, including of the immune system, is similar in the amphibian, Xenopus, to mammals and the embryos are ideal for tissue transplantation and lineage labelling experiments, which have enabled the elucidation of the distinct origins of embryonic and adult hematopoietic cells, as well as their migration pathways and organ colonisation behaviours. The zebrafish hematopoietic system is less well understood, but these embryos have recently emerged as a powerful system for both genetic analysis and imaging. In this review, we summarise our current knowledge of the cellular and genetic basis of ontogeny of the hematopoietic system in Xenopus and zebrafish embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Xenopus/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Redes Reguladoras de Genes , Modelos Genéticos , Xenopus/embriologia , Proteínas de Xenopus/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
13.
Dev Cell ; 18(4): 569-78, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412772

RESUMO

The regulation of stem cell ontogeny is poorly understood. We show that the leukemia-associated Ets transcription factor, Tel1/ETV6, specifies the first hematopoietic stem cells (HSCs) in the dorsal aorta (DA). In contrast, Tel1/ETV6 has little effect on embryonic blood formation, further distinguishing the programming of the long- and short-term blood populations. Consistent with the notion of concordance of arterial and HSC programs, we show that Tel1/ETV6 is also required for the specification of the DA as an artery. We further show that Tel1/ETV6 acts by regulating the transcription of VegfA in both the lateral plate mesoderm and also in the somites. Exogenous VEGFA rescues Tel1/ETV6 morphants, and depletion of VEGFA or its receptor, Flk1, largely phenocopies Tel1/ETV6 depletion. Few such links between intrinsic and extrinsic programming of stem cells have been reported previously. Our data place Tel1/ETV6 at the apex of the genetic regulatory cascade leading to HSC production.


Assuntos
Células Sanguíneas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas c-ets/fisiologia , Proteínas Repressoras/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hemangioblastos/metabolismo , Humanos , Hibridização In Situ , Mesoderma/metabolismo , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Transdução de Sinais , Somitos/metabolismo , Transcrição Gênica , Variante 6 da Proteína do Fator de Translocação ETS
14.
Development ; 135(19): 3185-90, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18715946

RESUMO

Cardiogenesis is inhibited by canonical Wnt/beta-catenin signalling and stimulated by non-canonical Wnt11/JNK signalling, but how these two signalling pathways crosstalk is currently unknown. Here, we show that Wnt/beta-catenin signalling restricts cardiogenesis via inhibition of GATA gene expression, as experimentally reinstating GATA function overrides beta-catenin-mediated inhibition and restores cardiogenesis. Furthermore, we show that GATA transcription factors in turn directly regulate Wnt11 gene expression, and that Wnt11 is required to a significant degree for mediating the cardiogenesis-promoting function of GATA transcription factors. These results demonstrate that GATA factors occupy a central position between canonical and non-canonical Wnt signalling in regulating heart muscle formation.


Assuntos
Fatores de Transcrição GATA/metabolismo , Coração/embriologia , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Fatores de Transcrição GATA/genética , Fator de Transcrição GATA4/antagonistas & inibidores , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/antagonistas & inibidores , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Xenopus/genética , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , beta Catenina/genética , beta Catenina/metabolismo
15.
Development ; 132(4): 763-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659482

RESUMO

The individual contributions of the three vertebrate GATA factors to endoderm formation have been unclear. Here we detail the early expression of GATA4, 5 and 6 in presumptive endoderm in Xenopus embryos and their induction of endodermal markers in presumptive ectoderm. Induction of HNF3beta by all three GATA factors was abolished when protein synthesis was inhibited, showing that these inductions are indirect. In contrast, whereas induction of Sox17alpha and HNF1beta by GATA4 and 5 was substantially reduced when protein synthesis was inhibited, induction by GATA6 was minimally affected, suggesting that GATA6 is a direct activator of these early endodermal genes. GATA4 induced GATA6 expression in the same assay and antisense morpholino oligonucleotides (MOs), designed to knock down translation of GATA6, blocked induction of Sox17alpha and HNF1beta by GATA4, suggesting that GATA4 induces these genes via GATA6 in this assay. All three GATA factors were induced by activin, although GATA4 and 6 required lower concentrations. GATA MOs inhibited Sox17alpha and HNF1beta induction by activin at low and high concentrations in the order: GATA6>GATA4>GATA5. Together with the timing of their expression and the effects of GATA MOs in vivo, these observations identify GATA6 as the predominant GATA factor in the maintenance of endodermal gene expression by TGFbeta signaling in gastrulating embryos. In addition, examination of gene expression and morphology in later embryos, revealed GATA5 and 6 as the most critical for the development of the gut and the liver.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endoderma/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Animais , Cicloeximida/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Emetina/farmacologia , Endoderma/efeitos dos fármacos , Fator de Transcrição GATA4 , Fator de Transcrição GATA5 , Fator de Transcrição GATA6 , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Fatores de Transcrição SOXF , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
16.
Development ; 129(24): 5683-95, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12421708

RESUMO

Blood and blood vessels develop in close association in vertebrate embryos and loss-of-function mutations suggest common genetic regulation. By the criteria of co-expression of blood and endothelial genes, and lineage tracing of progeny, we locate two distinct populations of progenitors for blood and endothelial cells in developing Xenopus embryos. The first population is located immediately posterior to the cement gland during neurula stages and gives rise to embryonic blood and vitelline veins in the anterior ventral blood island (aVBI), and to the endocardium of the heart. The second population resides in the dorsal lateral plate mesoderm, and contains precursors of adult blood stem cells and the major vessels. Both populations differentiate into endothelial cells in situ but migrate to new locations to differentiate into blood, suggesting that their micro-environments are unsuitable for haematopoietic differentiation. Both require BMP for their formation, even the Spemann organiser-derived aVBI, but individual genes are affected differentially. Thus, in the embryonic population, expression of the blood genes, SCL and GATA2, depend on BMP signalling while expression of the endothelial gene, Xfli1, does not. By contrast, Xfli1 expression in the adult, DLP population does require BMP. These results indicate that both adult and the anterior component of embryonic blood in Xenopus embryos derive from populations of progenitors that also give rise to endothelial cells. However, the two populations give rise to distinct regions of the vasculature and are programmed differentially by BMP.


Assuntos
Proteínas Proto-Oncogênicas , Xenopus/embriologia , Animais , Padronização Corporal , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Endotélio/embriologia , Endotélio/metabolismo , Gástrula/metabolismo , Hibridização In Situ , Mesoderma/metabolismo , Proteína Proto-Oncogênica c-fli-1 , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais , Células-Tronco , Fatores de Tempo , Transativadores/metabolismo , Transcrição Gênica , beta-Galactosidase/metabolismo
17.
EMBO J ; 21(12): 3039-50, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065417

RESUMO

Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best-characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix-loop-helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transcriptional hierarchy responsible for HSC formation by characterizing an SCL 3' enhancer that targets expression to HSCs and endothelium and their bipotential precursors, the haemangioblast. We have identified three critical motifs, which are essential for enhancer function and bind GATA-2, Fli-1 and Elf-1 in vivo. Our results suggest that these transcription factors are key components of an enhanceosome responsible for activating SCL transcription and establishing the transcriptional programme required for HSC formation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Embrião de Mamíferos/fisiologia , Embrião não Mamífero , Fator de Transcrição GATA2 , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Sequências Hélice-Alça-Hélice/genética , Humanos , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores/metabolismo , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA