Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Aging Clin Exp Res ; 35(11): 2807-2820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910290

RESUMO

BACKGROUND: The fine visuomotor function is commonly impaired in several neurological conditions. However, there is a scarcity of reliable neuropsychological tools to assess such a critical domain. AIMS: The aim of this study is to explore the psychometric properties and provide normative data for the Visual-Motor Speed and Precision Test (VMSPT). RESULTS: Our normative sample included 220 participants (130 females) aged 18-86 years (mean education = 15.24 years, SD = 3.98). Results showed that raw VMSPT scores were affected by higher age and lower education. No effect of sex or handedness was shown. Age- and education-based norms were provided. VMSPT exhibited weak-to-strong correlations with well-known neuropsychological tests, encompassing a wide range of cognitive domains of clinical relevance. By gradually intensifying the cognitive demands, the test becomes an indirect, performance-oriented measure of executive functioning. Finally, VMSPT seems proficient in capturing the speed-accuracy trade-off typically observed in the aging population. CONCLUSIONS: This study proposes the initial standardization of a versatile, time-efficient, and cost-effective neuropsychological tool for assessing fine visuomotor coordination. We propose renaming the VMSPT as the more approachable "Little Circles Test" (LCT).


Assuntos
Envelhecimento , Função Executiva , Feminino , Humanos , Idoso , Testes Neuropsicológicos , Escolaridade , Cognição
2.
Sci Rep ; 14(1): 5263, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438468

RESUMO

Pandemics have the potential to change how people behave and feel. The COVID-19 pandemic is no exception; thus, it may serve as a "challenging context" for understanding how pandemics affect people's minds. In this study, we used high-density electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to examine the neural correlates of fear of contagion during the most critical moments of COVID-19 in Italy (i.e., October 2020-May 2021). To do that, we stimulated participants (N = 17; nine females) with artificial-intelligence-generated faces of people presented as healthy, recovered from COVID-19, or infected by SARS-CoV-2. The fMRI results documented a modulation of large bilateral fronto-temporo-parietal functional brain networks. Critically, we found selective recruitment of cortical (e.g., frontal lobes) and subcortical fear-related structures (e.g., amygdala and putamen) of the so-called social brain network when participants observed COVID-19-related faces. Consistently, EEG results showed distinct patterns of brain activity selectively associated with infected and recovered faces (e.g., delta and gamma rhythm). Together, these results highlight how pandemic contexts may reverberate in the human brain, thus influencing most basic social and cognitive functioning. This may explain the emergence of a cluster of psychopathologies during and after the COVID-19 pandemic. Therefore, this study underscores the need for prompt interventions to address pandemics' short- and long-term consequences on mental health.


Assuntos
COVID-19 , Feminino , Humanos , Imageamento por Ressonância Magnética , Pandemias , SARS-CoV-2 , Medo , Eletroencefalografia
3.
Front Neurosci ; 17: 1130025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998736

RESUMO

Interoception can be described as the ability to perceive inner body sensations and it is different between biological sex. However, no previous research correlated this ability with brain functional connectivity (FC) between males and females. In this study, we used resting-state functional magnetic resonance imaging to investigate FC of networks involved in interoception among males and females in a sample of healthy volunteers matched for age. In total, 67 participants (34 females, mean age 44.2; 33 males, mean age 37.2) underwent a functional MRI session and completed the Self-Awareness Questionnaire (SAQ) that tests the interoceptive awareness. To assess the effect of sex on scores obtained on the SAQ we performed a multivariate analysis of variance. A whole-brain seed-to-seed FC analysis was conducted to investigate the correlation between SAQ score and FC, and then to test differences in FC between males and females with SAQ score as a covariate. MANOVA revealed a significant difference in SAQ scores between males and females with higher values for the second ones. Also, significant correlations among interoception scores and FC in Salience network and fronto-temporo-parietal brain areas have been detected, with a sharp prevalence for the female. These results support the idea of a female advantage in the attention toward interoceptive sensations, suggesting common inter-network areas that concur to create the sense of self.

4.
Front Hum Neurosci ; 17: 1123014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063098

RESUMO

Neurofeedback (NF) is a biofeedback technique that teaches individuals self-control of brain functions by measuring brain activations and providing an online feedback signal to modify emotional, cognitive, and behavioral functions. NF approaches typically rely on a single modality, such as electroencephalography (EEG-NF) or a brain imaging technique, such as functional magnetic resonance imaging (fMRI-NF). The introduction of simultaneous EEG-fMRI tools has opened up the possibility of combining the high temporal resolution of EEG with the high spatial resolution of fMRI, thereby increasing the accuracy of NF. However, only a few studies have actively combined both techniques. In this study, we conducted a systematic review of EEG-fMRI-NF studies (N = 17) to identify the potential and effectiveness of this non-invasive treatment for neurological conditions. The systematic review revealed a lack of homogeneity among the studies, including sample sizes, acquisition methods in terms of simultaneity of the two procedures (unimodal EEG-NF and fMRI-NF), therapeutic targets field, and the number of sessions. Indeed, because most studies are based on a single session of NF, it is difficult to draw any conclusions regarding the therapeutic efficacy of NF. Therefore, further research is needed to fully understand non-clinical and clinical potential of EEG-fMRI-NF.

5.
Commun Biol ; 6(1): 1163, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964121

RESUMO

Tool-use skills represent a significant cognitive leap in human evolution, playing a crucial role in the emergence of complex technologies. Yet, the neural mechanisms underlying such capabilities are still debated. Here we explore with fMRI the functional brain networks involved in tool-related action understanding. Participants viewed images depicting action-consistent (e.g., nail-hammer) and action-inconsistent (e.g., scarf-hammer) object-tool pairs, under three conditions: semantic (recognizing the tools previously seen in the pairs), mechanical (assessing the usability of the pairs), and control (looking at the pairs without explicit tasks). During the observation of the pairs, task-based left-brain functional connectivity differed within conditions. Compared to the control, both the semantic and mechanical conditions exhibited co-activations in dorsal (precuneus) and ventro-dorsal (inferior frontal gyrus) regions. However, the semantic condition recruited medial and posterior temporal areas, whereas the mechanical condition engaged inferior parietal and posterior temporal regions. Also, when distinguishing action-consistent from action-inconsistent pairs, an extensive frontotemporal neural circuit was activated. These findings support recent accounts that view tool-related action understanding as the combined product of semantic and mechanical knowledge. Furthermore, they emphasize how the left inferior parietal and anterior temporal lobes might be considered as hubs for the cross-modal integration of physical and conceptual knowledge, respectively.


Assuntos
Mapeamento Encefálico , Neocórtex , Humanos , Mapeamento Encefálico/métodos , Lobo Temporal , Lobo Parietal , Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA