Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(3): e3001578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263320

RESUMO

Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Análise por Conglomerados , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo
2.
Neurobiol Dis ; 198: 106542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810948

RESUMO

A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.


Assuntos
Proteína Huntingtina , Doença de Huntington , Neurônios , Proteínas tau , Humanos , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Doença de Huntington/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Neurônios/metabolismo , Neurônios/patologia , Adulto , Transplante de Tecido Fetal/métodos , Idoso , Transplante de Tecido Encefálico/métodos
3.
Neurobiol Dis ; 190: 106376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092268

RESUMO

In Huntington disease (HD), the mutant huntingtin (mtHTT) protein is the principal cause of pathological changes that initiate primarily along the cortico-striatal axis. mtHTT is ubiquitously expressed and there is, accordingly, growing recognition that HD is a systemic disorder with functional interplay between the brain and the periphery. We have developed a monoclonal antibody, C6-17, targeting an exposed region of HTT near the aa586 Caspase 6 cleavage site. As recently published, mAB C6-17 can block cell-to-cell propagation of mtHTT in vitro. In order to reduce the burden of the mutant protein in vivo, we queried whether extracellular mtHTT could be therapeutically targeted in YAC128 HD mice. In a series of proof of concept experiments, we found that systemic mAB C6-17 treatment resulted in the distribution of the mAB C6-17 to peripheral and CNS tissues and led to the reduction of HTT protein levels. Compared to CTRL mAB or vehicle treated mice, the mAB C6-17 treated YAC128 animals showed improved body weight and motor behaviors, a delayed progression in motor deficits and reduced striatal EM48 immunoreactivity. These results provide the first proof of concept for the feasibility and therapeutic efficacy of an antibody-based anti-HTT passive immunization approach and suggest this modality as a potential new HD treatment strategy.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteína Huntingtina/genética , Imunoterapia , Modelos Animais de Doenças , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Progressão da Doença
4.
Mol Psychiatry ; 28(10): 4070-4083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749233

RESUMO

Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.


Assuntos
Doença de Alzheimer , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Cognição , Peptídeos beta-Amiloides
5.
Cell Mol Life Sci ; 80(2): 45, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651994

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Anticorpos
6.
Neurobiol Dis ; 180: 106091, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967065

RESUMO

In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/genética , Leucócitos Mononucleares/metabolismo , Modelos Animais de Doenças , Fenótipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
7.
Mol Psychiatry ; 27(1): 269-280, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711942

RESUMO

If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Príons , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Príons/genética , Príons/metabolismo
8.
Mol Ther ; 30(4): 1500-1522, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051614

RESUMO

Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Imunização Passiva , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo
9.
Mol Psychiatry ; 26(7): 2685-2706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33495544

RESUMO

Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Príons , Humanos , Neurônios
10.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
11.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639012

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.


Assuntos
Benzamidas/farmacologia , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Piridinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Radiossensibilizantes/farmacologia , Rabdomiossarcoma/genética , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/radioterapia
12.
Neurobiol Dis ; 145: 105042, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798729

RESUMO

A number of publications have reported that cysteamine has significant therapeutic effects on several aspects of Parkinson's disease (PD)-related pathology but none of these studies have evaluated its impact on pathological forms of α-Synuclein (α-Syn), one of the main hallmarks of PD. We therefore tested the efficacy of cysteamine on the Thy1-α-Syn mouse model which over-expresses full-length human wild-type α-Syn. Two-month (early stage disease) and 6-month old (late stage disease) mice and littermate controls were treated daily with cysteamine (20 mg/kg, i.p.) to assess the protective and restorative properties of this compound. After 6 weeks of treatment, animals were tested using a battery of motor tests. Cysteamine-treated transgenic mice displayed significant improvements in motor performance as compared to saline-treated transgenic littermates. Post-mortem readouts revealed a reduction in fibrillation, phosphorylation and total levels of overexpresed human α-Syn. To determine if such outcomes extended to human cells, the benefits of cysteamine were additionally tested using 6-hydroxydopamine (6-OHDA) treated neurons differentiated from induced pluripotent stem cells (iPSCs) derived from a PD patient harbouring a triplication of the SNCA gene. SNCA neurons treated with cysteamine exhibited significantly more intact/healthy neurites than cells treated with 6-OHDA alone. Additionally, SNCA neurons treated with cysteamine in the absence of 6-OHDA showed a trend towards lower total α-Syn levels. Overall, our in vivo and in vitro findings suggest that cysteamine can act as a disease-modifying molecule by enhancing -the survival of dopaminergic neurons and reducing pathological forms of α-Syn.


Assuntos
Cisteamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/genética , Animais , Neurônios Dopaminérgicos/patologia , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Neurobiol Dis ; 141: 104941, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422281

RESUMO

In recent years, substantial evidence has emerged to suggest that spreading of pathological proteins contributes to disease pathology in numerous neurodegenerative disorders. Work from our laboratory and others have shown that, despite its strictly genetic nature, Huntington's disease (HD) may be another condition in which this mechanism contributes to pathology. In this study, we set out to determine if the mutant huntingtin protein (mHTT) present in post-mortem brain tissue derived from HD patients can induce pathology in mice and/or non-human primates. For this, we performed three distinct sets of experiments where homogenates were injected into the brains of adult a) Wild-type (WT) and b) BACHD mice or c) non-human primates. Neuropathological assessments revealed that, while changes in the endogenous huntingtin were not apparent, mHTT could spread between cellular elements and brain structures. Furthermore, behavioural differences only occurred in the animal model of HD which already overexpressed mHTT. Taken together, our results indicate that mHTT derived from human brains has only a limited capacity to propagate between cells and does not depict prion-like characteristics. This contrasts with recent work demonstrating that other forms of mHTT - such as fibrils of a pathological polyQ length or fibroblasts and induced pluripotent stem cells derived from HD cases - can indeed disseminate disease throughout the brain in a prion-like fashion.


Assuntos
Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Comportamento Animal , Encéfalo/metabolismo , Criança , Feminino , Humanos , Proteína Huntingtina/administração & dosagem , Macaca mulatta , Camundongos Endogâmicos C57BL , Mutação , Neurônios/patologia
14.
Neurobiol Dis ; 141: 104951, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439599

RESUMO

In order to model various aspects of Huntington's disease (HD) pathology, in particular protein spread, we administered adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or GFP coupled to HTT-Exon1 (19Q or 103Q) to the central nervous system of adult wild-type (WT) mice and non-human primates. All animals underwent behavioral testing and post-mortem analyses to determine the long-term consequences of AAV injection. Both mice and non-human primates demonstrated behavioral changes at 2-3 weeks post-surgery. In mice, these changes were absent after 3 months while in non-human primates, they persisted in the majority of tested animals. Post-mortem analysis revealed that spreading of the aggregates was limited, although the virus did spread between synaptically-connected brain regions. Despite circumscribed spreading, the presence of mHTT generated changes in endogenous huntingtin (HTT) levels in both models. Together, these results suggest that viral expression of mHTTExon1 can induce spreading and seeding of HTT in both mice and non-human primates.


Assuntos
Dependovirus/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL
15.
Neurobiol Dis ; 141: 104943, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407769

RESUMO

Huntington's disease (HD) is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property which may serve as a new therapeutic focus. Accordingly, we set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region close to the aa586 caspase-6 cleavage site of the HTT protein. This monoclonal antibody, designated C6-17, effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, we demonstrate that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates. These findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake suggesting that this antibody could interfere with the pathological processes of mutHTT spreading in vivo.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/imunologia , Doença de Huntington/metabolismo , Animais , Transporte Biológico , Feminino , Células HEK293 , Células HeLa , Humanos , Doença de Huntington/prevenção & controle , Camundongos Endogâmicos BALB C , Mutação , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle
16.
J Neuroinflammation ; 17(1): 98, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241286

RESUMO

BACKGROUND: Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that affects cognitive and motor abilities by primarily targeting the striatum and cerebral cortex. HD is caused by a mutation elongating the CAG repeats within the Huntingtin gene, resulting in HTT protein misfolding. Although the genetic cause of HD has been established, the specific susceptibility of neurons within various brain structures has remained elusive. Microglia, which are the brain's resident macrophages, have emerged as important players in neurodegeneration. Nevertheless, few studies have examined their implication in HD. METHODS: To provide novel insights, we investigated the maturation and dysfunction of striatal microglia using the R6/2 mouse model of HD. This transgenic model, which presents with 120+/-5 CAG repeats, displays progressive motor deficits beginning at 6 weeks of age, with full incapacitation by 13 weeks. We studied microglial morphology, phagocytic capacity, and synaptic contacts in the striatum of R6/2 versus wild-type (WT) littermates at 3, 10, and 13 weeks of age, using a combination of light and transmission electron microscopy. We also reconstructed dendrites and determined synaptic density within the striatum of R6/2 and WT littermates, at nanoscale resolution using focused ion beam scanning electron microscopy. RESULTS: At 3 weeks of age, prior to any known motor deficits, microglia in R6/2 animals displayed a more mature morphological phenotype than WT animals. Microglia from R6/2 mice across all ages also demonstrated increased phagocytosis, as revealed by light microscopy and transmission electron microscopy. Furthermore, microglial processes from 10-week-old R6/2 mice made fewer contacts with synaptic structures than microglial processes in 3-week-old R6/2 mice and age-matched WT littermates. Synaptic density was not affected by genotype at 3 weeks of age but increased with maturation in WT mice. The location of synapses was lastly modified in R6/2 mice compared with WT controls, from targeting dendritic spines to dendritic trunks at both 3 and 10 weeks of age. CONCLUSIONS: These findings suggest that microglia may play an intimate role in synaptic alteration and loss during HD pathogenesis.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Forma Celular/fisiologia , Modelos Animais de Doenças , Feminino , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Neurônios/patologia , Sinapses/patologia
17.
Mol Psychiatry ; 24(3): 364-377, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29487401

RESUMO

There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.


Assuntos
Doença de Huntington/imunologia , Doença de Huntington/terapia , Imunoterapia/métodos , Humanos , Doença de Huntington/genética
18.
Neurobiol Dis ; 132: 104569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31398458

RESUMO

The types of treatments and interventions being developed for chronic neurodegenerative disorders have expanded considerably in recent years. In addition to the variety of targets being pursued, strategies have moved from symptom management to more directed disease-modifying approaches. Among them are antibody-based therapies, which are not only being evaluated for a range of tauopathies and synucleinopathies, but are also emerging as a potential application for monogenic disorders of the central nervous system (CNS), including Huntington's disease (HD). Despite the excitement around the early trial data of anti-sense oligonucleotides (ASO) treatment for such disorders, antibody therapies may hold the key to tackling another aspect of the disease that could be critical to its pathogenesis. While gene-based methodologies are designed to lower, predominantly within cellular elements, mutant huntingtin protein (mHtt) - the genetic product of HD - the pathological protein is abundant in free forms and in several compartments including the cerebrospinal fluid, the plasma and the extracellular matrix. With accumulating evidence for the spreading and seeding capacities of mHtt, it may indeed be essential to target the protein both intracellularly and extracellularly. Therefore, free forms of mHtt not only represents an ideal target for antibodies, but one that needs to be addressed if meaningful and maximal clinical benefits are to be expected. This review explores the potential use of antibody-based therapies to treat HD, including the rationale for this approach as well as the pre-clinical data supporting it. The potential challenges that will need to be considered if such route is to be pursued clinically are also discussed.


Assuntos
Anticorpos/uso terapêutico , Doença de Huntington/terapia , Imunização/métodos , Imunização/tendências , Animais , Humanos , Proteína Huntingtina/antagonistas & inibidores
20.
Neurobiol Dis ; 124: 163-175, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30408591

RESUMO

The production of extracellular vesicles (EV) is a ubiquitous feature of eukaryotic cells but pathological events can affect their formation and constituents. We sought to characterize the nature, profile and protein signature of EV in the plasma of Parkinson's disease (PD) patients and how they correlate to clinical measures of the disease. EV were initially collected from cohorts of PD (n = 60; Controls, n = 37) and Huntington's disease (HD) patients (Pre-manifest, n = 11; manifest, n = 52; Controls, n = 55) - for comparative purposes in individuals with another chronic neurodegenerative condition - and exhaustively analyzed using flow cytometry, electron microscopy and proteomics. We then collected 42 samples from an additional independent cohort of PD patients to confirm our initial results. Through a series of iterative steps, we optimized an approach for defining the EV signature in PD. We found that the number of EV derived specifically from erythrocytes segregated with UPDRS scores corresponding to different disease stages. Proteomic analysis further revealed that there is a specific signature of proteins that could reliably differentiate control subjects from mild and moderate PD patients. Taken together, we have developed/identified an EV blood-based assay that has the potential to be used as a biomarker for PD.


Assuntos
Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Parkinson/sangue , Idoso , Biomarcadores/sangue , Contagem de Células Sanguíneas , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA