Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903248

RESUMO

γ-Alumina with incorporated metal oxide species (including Fe, Cu, Zn, Bi, and Ga) was synthesized by liquid-assisted grinding-mechanochemical synthesis, applying boehmite as the alumina precursor and suitable metal salts. Various contents of metal elements (5 wt.%, 10 wt.%, and 20 wt.%) were used to tune the composition of the resulting hybrid materials. The different milling time was tested to find the most suitable procedure that allowed the preparation of porous alumina incorporated with selected metal oxide species. The block copolymer, Pluronic P123, was used as a pore-generating agent. Commercial γ-alumina (SBET = 96 m2·g-1), and the sample fabricated after two hours of initial grinding of boehmite (SBET = 266 m2·g-1), were used as references. Analysis of another sample of γ-alumina prepared within 3 h of one-pot milling revealed a higher surface area (SBET = 320 m2·g-1) that did not increase with a further increase in the milling time. So, three hours of grinding time were set as optimal for this material. The synthesized samples were characterized by low-temperature N2 sorption, TGA/DTG, XRD, TEM, EDX, elemental mapping, and XRF techniques. The higher loading of metal oxide into the alumina structure was confirmed by the higher intensity of the XRF peaks. Samples synthesized with the lowest metal oxide content (5 wt.%) were tested for selective catalytic reduction of NO with NH3 (NH3-SCR). Among all tested samples, besides pristine Al2O3 and alumina incorporated with gallium oxide, the increase in reaction temperature accelerated the NO conversion. The highest NO conversion rate was observed for Fe2O3-incorporated alumina (70%) at 450 °C and CuO-incorporated alumina (71%) at 300 °C. The CO2 capture was also studied for synthesized samples and the sample of alumina with incorporated Bi2O3 (10 wt.%) gave the best result (1.16 mmol·g-1) at 25 °C, while alumina alone could adsorb only 0.85 mmol·g-1 of CO2. Furthermore, the synthesized samples were tested for antimicrobial properties and found to be quite active against Gram-negative bacteria, P. aeruginosa (PA). The measured Minimum Inhibitory Concentration (MIC) values for the alumina samples with incorporated Fe, Cu, and Bi oxide (10 wt.%) were found to be 4 µg·mL-1, while 8 µg·mL-1 was obtained for pure alumina.

2.
J Environ Manage ; 324: 116306, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166864

RESUMO

This study concerns the fabrication of CTAB- and N,N-dimethyltetradecylamine-grafted zirconia and evaluation of their ability to adsorb vanadium ions. The effectiveness of ZrO2 functionalization and the different nature of the modifiers used were confirmed by differences in the porosity (ZrO2: SBET = 347 m2/g; ZrO2-CTAB: SBET = 375 m2/g, ZrO2-NH+: SBET = 155 m2/g), types of functional groups, and isoelectric points (the ZrO2 and CTAB-modified samples have IEPs = 3.8 and 3.9, ZrO2-NH+ has IEP = 7.1) of the prepared adsorbents. The designed materials were tested in batch adsorption experiments involving the removal of vanadium ions from model wastewaters at various process parameters, among which pH proved to be the most important. Based on equilibrium and kinetic evaluations, it was proved that the sorption of V(V) ions followed pseudo-second-order and intraparticle diffusion models, and the data were better fitted to the Langmuir model, suggesting the following order of the sorbents in terms of favorability for V(V) ion adsorption: ZrO2-NH+ > ZrO2 > ZrO2-CTAB. The estimated maximum monolayer capacity of ZrO2-NH+ for V(V) (87.72 mg/g) was the highest among the tested materials. Additionally, it was confirmed that adsorption of V(V) ions onto synthesized materials is a heterogeneous, exothermic, and spontaneous reaction, as evidenced by the calculated values of thermodynamic parameters. The key goals included the transfer of experimental findings obtained using model solutions to the adsorption of V(V) ions from solutions arising from the leaching process of spent catalysts. The highest adsorption efficiencies of 70.8% and 47.5% were recorded for the ZrO2-NH+ material in acidic solution; this may be related to the protonization of -NH+ groups, which favors the sorption of V(V) ions. Based on desorption tests as well as the results of infrared and X-ray photoelectron spectroscopy, irrespective of the process conditions, the physical nature of the adsorbent/adsorbate interaction was confirmed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Vanádio , Poluentes Químicos da Água/química , Cetrimônio , Concentração de Íons de Hidrogênio , Adsorção , Íons , Cinética , Termodinâmica
3.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008696

RESUMO

Enzymatic conversion of pharmaceutically active ingredients (API), using immobilized enzymes should be considered as a promising industrial tool due to improved reusability and stability of the biocatalysts at harsh process conditions. Therefore, in this study horseradish peroxidase was immobilized into sodium alginate capsules and then trapped into poly(vinyl chloride) electrospun fibers to provide additional enzyme stabilization and protection against the negative effect of harsh process conditions. Due to encapsulation immobilization, 100% of immobilization yield was achieved leading to loading of 25 µg of enzyme in 1 mg of the support. Immobilized in such a way, enzyme showed over 80% activity retention. Further, only slight changes in kinetic parameters of free (Km = 1.54 mM) and immobilized horseradish peroxidase (Km = 1.83 mM) were noticed, indicating retention of high catalytic properties and high substrate affinity by encapsulated biocatalyst. Encapsulated horseradish peroxidase was tested in biodegradation of two frequently occurring in wastewater API, sulfamethoxazole (antibiotic) and carbamazepine (anticonvulsant). Over 80% of both pharmaceutics was removed by immobilized enzyme after 24 h of the process from the solution at a concentration of 1 mg/L, under optimal conditions, which were found to be pH 7, temperature 25 °C and 2 mM of H2O2. However, even from 10 mg/L solutions, it was possible to remove over 40% of both pharmaceuticals. Finally, the reusability and storage stability study of immobilized horseradish peroxidase showed retention of over 60% of initial activity after 20 days of storage at 4 °C and after 10 repeated catalytic cycles, indicating great practical application potential. By contrast, the free enzyme showed less than 20% of its initial activity after 20 days of storage and exhibited no recycling potential.


Assuntos
Carbamazepina/isolamento & purificação , Peroxidase do Rábano Silvestre/metabolismo , Cloreto de Polivinila/química , Sulfametoxazol/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Biocatálise , Biodegradação Ambiental , Carbamazepina/química , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Cinética , Sulfametoxazol/química
4.
J Environ Manage ; 204(Pt 1): 123-135, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28865307

RESUMO

A comparative analysis was performed concerning the removal of two different organic dyes from model aqueous solution using an inorganic oxide adsorbent. The key element of the study concerns evaluation of the influence of the dyes' structure and their acid-base character on the efficiency of the adsorption process. The selection of sorbent material for this research - an MgO-SiO2 oxide system synthesized via a modified sol-gel route - is also not without significance. The relatively high porous structure parameters of this material (ABET = 642 m2/g, Vp = 1.11 mL and Sp = 9.8 nm) are a result of the proposed methodology for its synthesis. Both organic dyes (C.I. Acid Blue 29 and C.I. Basic Blue 9) were subjected to typical batch adsorption tests, including investigation of such process parameters as time, initial adsorbate concentration, adsorbent dose, pH and temperature. An attempt was also made to estimate the sorption capacity of the oxide material with respect to the analyzed organic dyes. To achieve the objectives of the research - determine the efficiency of adsorption - it was important to perform a thorough physicochemical analysis of the adsorbents (e.g. FTIR, elemental analysis and porous structure parameters). The results confirmed the significantly higher affinity of the basic dye to the oxide adsorbents compared with the acidic dye. The regeneration tests, which indirectly determine the nature of the adsorbent/adsorbate interactions, provide further evidence for this finding. On this basis, a probable mechanism of dyes adsorption on the MgO-SiO2 oxide adsorbent was proposed.


Assuntos
Compostos Azo/química , Azul de Metileno/química , Naftalenos/química , Óxidos/química , Tiazinas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Corantes/química , Cinética , Temperatura , Água
5.
ACS Omega ; 7(31): 27062-27078, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967031

RESUMO

This paper discusses the properties of metal oxide/biochar systems for use in wastewater treatment. Titanium, zinc, and iron compounds are most often combined with biochar; therefore, combinations of their oxides with biochar are the focus of this review. The first part of this paper presents the most important information about biochar, including its advantages, disadvantages, and possible modification, emphasizing the incorporation of inorganic oxides into its structure. In the next four sections, systems of biochar combined with TiO2, ZnO, Fe3O4, and other metal oxides are discussed in detail. In the next to last section probable degradation mechanisms are discussed. Literature studies revealed that the dispersion of a metal oxide in a carbonaceous matrix causes the creation or enhancement of surface properties and catalytic or, in some cases, magnetic activity. Addition of metallic species into biochars increases their weight, facilitating their separation by enabling the sedimentation process and thus facilitating the recovery of the materials from the water medium after the purification process. Therefore, materials based on the combination of inorganic oxide and biochar reveal a wide range of possibilities for environmental applications in aquatic media purification.

6.
Sci Rep ; 12(1): 21294, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494421

RESUMO

Novel alumina-based materials enriched with vanadia and lanthana were successfully synthesized via in situ modification using a mechanochemical method, and were applied in ammonia-induced selective catalytic reduction of nitrogen oxides (SCR process). The synthesis was optimized in terms of the ball milling time (3 or 5 h), vanadium content (0.5, 1 or 2 wt% in the final product), and lanthanum content (0.5 or 1 wt% in the final product). Vanadium (V) oxide was immobilized on an alumina support to provide catalytic activity, while lanthana was introduced to increase the affinity of nitrogen oxides and create more active adsorption sites. Mechanochemical synthesis successfully produced mesoporous materials with a large specific surface area of 279-337 m2/g and a wide electrokinetic potential range from 60 to (- 40) mV. Catalytic tests showed that the incorporation of vanadia resulted in a very large improvement in catalytic performance compared with pristine alumina, increasing its efficiency from 14 to 63% at 400 °C. The best SCR performance, a 75% nitrogen oxide conversion rate at a temperature of 450 °C, was obtained for alumina enriched with 2 and 0.5 wt% of vanadium and lanthanum, respectively, which may be considered as a promising result.


Assuntos
Óxido de Alumínio , Amônia , Óxido de Alumínio/química , Amônia/química , Catálise , Óxidos de Nitrogênio/química , Óxidos/química , Oxirredução
7.
J Hazard Mater ; 401: 123413, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763703

RESUMO

Insertion of transition metal species into crystalline alumina at low temperatures is proposed to achieve the dispersion of these species at atomic level paired with exceptional textural properties. Precisely, MeAl2O4/γ-Al2O3 (Me = Mn, Fe, Co, Ni, and/or Cu) nanostructured ceramic catalysts were fabricated with ultra large mesopores (16-30 nm), and high specific surface area (180-290 m2 g-1) and pore volume (1.1-1.6 cm3 g-1). These ceramics were applied as efficient catalysts for the selective catalytic reduction (SCR) of NO with NH3, and their selectivity was discussed in terms of N2O formation, an undesirable byproduct. The catalysts containing Fe, Cu, or Mn showed the highest activities, however, within different temperature ranges. Further tuning of the catalytic activity and selectivity was achieved by creating ceramic catalysts with mixed compositions, e.g., CuFe and MnFe. Upon insertion of the transition metal species into crystalline structure of alumina to maximize atom efficiency, the N2O formation profile did not change significantly for all metal aluminates except MnAl2O4, indicating that these catalysts are suitable for SCR and selectively promote the reduction of NO.

8.
Materials (Basel) ; 14(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072043

RESUMO

The presented study deals with the fabrication of highly stable and active nanobiocatalysts based on Candida antarctica lipase B (CALB) immobilization onto pristine and poly(dimethylsiloxane) modified MWCNTs. The MWCNTs/PDMS nanocomposites, containing 40 wt.% of the polymer with two molecular weights, were successfully synthesized via adsorption modification. The effect of PDMS chains length on the textural/structural properties of produced materials was studied by means of the nitrogen adsorption-desorption technique, Raman spectroscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. P-MWCNTs and MWCNTs/PDMS nanocomposites were tested as supports for lipase immobilization. Successful deposition of the enzyme onto the surface of P-MWCNTs and MWCNTs/PDMS nanocomposite materials was confirmed mainly using ATR-FTIR spectroscopy. The immobilization efficiency, stability, and catalytic activity of the immobilized enzyme were studied, and the reusability of the produced biocatalytic systems was examined. The presented results demonstrate that the produced novel biocatalysts might be considered as promising materials for biocatalytic applications.

9.
Colloids Surf B Biointerfaces ; 196: 111310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32911293

RESUMO

In the efforts for the removal of hazardous materials from the environment biological processes are a valuable tool. Although much attention has been paid to the changes in bacteria at the omics level, another, physical-chemical perspective on the issue is essential, as little is known of microbial response to continuous exposition on harmful substances. This study provides in-depth characterization of the physical-chemical parameters of bacterial biomass after hydrocarbons exposure. To provide comparability of the harmful effects of chlorotoluenes and xylenes non-exposed and 12-months hydrocarbons exposed cells were analyzed, using the advanced spectrometric methods, inverse gas chromatography and low-temperature N2 sorption to evaluate acid-base as well as dispersive properties of the studied biomass. Presented results indicate P. fluorescens B01 cells strategy aimed at protecting the cell, thus lowering its' biodegradation efficiency as a result of metabolic stress. The outcome of the study was that prolonged exposure to pollutants might reduce the bioavailability of hydrocarbons to bacteria cells, and consequently decrease the effectiveness of decontamination of polluted sites by indigenous microorganisms.


Assuntos
Bactérias , Hidrocarbonetos , Biodegradação Ambiental , Biomassa , Cromatografia Gasosa-Espectrometria de Massas
10.
Materials (Basel) ; 12(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897767

RESUMO

Scientific development has increased the awareness of water pollutant forms and has reawakened the need for its effective purification. Oxyanions are created by a variety of redox-sensitive metals and metalloids. These species are harmful to living matter due to their toxicity, nondegradibility, and mobility in aquatic environments. Among a variety of water treatment techniques, adsorption is one of the simplest, cheapest, and most effective. Since metal-oxide-based adsorbents poses a variety of functional groups onto their surface, they were widely applied in ions sorption. In this paper adsorption of harmful oxyanions by metal oxide-based materials according to literature survey was studied. Characteristic of oxyanions originating from As, V, B, W and Mo, their probable adsorption mechanisms and comparison of their sorption affinity for metal-oxide-based materials such as iron oxides, aluminum oxides, titanium dioxide, manganium dioxide, and various oxide minerals and their combinations are presented in this paper.

11.
Materials (Basel) ; 12(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995753

RESUMO

Nowadays, novel and advanced methods are being sought to efficiently remove dyes from wastewaters. These compounds, which mainly originate from the textile industry, may adversely affect the aquatic environment as well as living organisms. Thus, in presented study, the synthesized ZrO2-SiO2 and Cu2+-doped ZrO2-SiO2 oxide materials were used for the first time as supports for laccase immobilization, which was carried out for 1 h, at pH 5 and 25 °C. The materials were thoroughly characterized before and after laccase immobilization with respect to electrokinetic stability, parameters of the porous structure, morphology and type of surface functional groups. Additionally, the immobilization yields were defined, which reached 86% and 94% for ZrO2-SiO2-laccase and ZrO2-SiO2/Cu2+-laccase, respectively. Furthermore, the obtained biocatalytic systems were used for enzymatic decolorization of the Remazol Brilliant Blue R (RBBR) dye from model aqueous solutions, under various reaction conditions (time, temperature, pH). The best conditions of the decolorization process (24 h, 30 °C and pH = 4) allowed to achieve the highest decolorization efficiencies of 98% and 90% for ZrO2-SiO2-laccase and ZrO2-SiO2/Cu2+-laccase, respectively. Finally, it was established that the mortality of Artemia salina in solutions after enzymatic decolorization was lower by approx. 20% and 30% for ZrO2-SiO2-laccase and ZrO2-SiO2/Cu2+-laccase, respectively, as compared to the solution before enzymatic treatment, which indicated lower toxicity of the solution. Thus, it should be clearly stated that doping of the oxide support with copper ions positively affects enzyme stability, activity and, in consequence, the removal efficiency of the RBBR dye.

12.
J Hazard Mater ; 328: 150-159, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110149

RESUMO

A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m2/g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA