Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nutr Neurosci ; 23(4): 309-320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30039750

RESUMO

Objectives: A strong rise of the fructose content in the human diet occurred in the last decade, as corn syrup is widely used as a sweetener for beverages and processed food. Since young people make a widespread consumption of added sugars, we evaluated the effects of a two weeks fructose-rich diet on brain redox homeostasis, autophagy and synaptic plasticity in the cortex of young and adults rats, in order to highlight the early risks to which brain is exposed.Methods and Results: Short-term fructose feeding was associated with an imbalance of redox homeostasis, as lower amount of Nuclear factor (erythroid derived 2)-like 2, lower activity of Glucose 6-phosphate dehydrogenase and Glutathione reductase, together with lower Glutathione/Oxidized Glutathione ratio, were found in fructose-fed young and adult rats. Fructose-rich diet was also associated with the activation of autophagy, as higher levels of Beclin, LC3 II and P62 were detected in cortex of fructose-fed rats. A diet associated decrease of synaptophysin, synapsin I, and synaptotagmin I, was found in fructose-fed young and adult rats. Interestingly, BDNF amount was significantly lower only in fructose-fed adult rats, while the level of its receptor TrkB decreased in both groups of treated rats. A further marker of brain functioning, Acetylcholinesterase activity, was found increased only in fructose-fed young animals.Conclusion: Overall, our findings suggest that young rats may severely suffer from the deleterious influence of fructose on brain health as the adults and provide experimental data suggesting the need of targeted nutritional strategies to reduce its amount in foods.


Assuntos
Autofagia/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Frutose/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991770

RESUMO

Dietary fats and sugars were identified as risk factors for overweight and neurodegeneration, especially in middle-age, an earlier stage of the aging process. Therefore, our aim was to study the metabolic response of both white adipose tissue and brain in middle aged rats fed a typical Western diet (high in saturated fats and fructose, HFF) and verify whether a similarity exists between the two tissues. Specific cyto/adipokines (tumor necrosis factor alpha (TNF-α), adiponectin), critical obesity-inflammatory markers (haptoglobin, lipocalin), and insulin signaling or survival protein network (insulin receptor substrate 1 (IRS), Akt, Erk) were quantified in epididymal white adipose tissue (e-WAT), hippocampus, and frontal cortex. We found a significant increase of TNF-α in both e-WAT and hippocampus of HFF rats, while the expression of haptoglobin and lipocalin was differently affected in the various tissues. Interestingly, adiponectin amount was found significantly reduced in e-WAT, hippocampus, and frontal cortex of HFF rats. Insulin signaling was impaired by HFF diet in e-WAT but not in brain. The above changes were associated with the decrease in brain derived neurotrophic factor (BDNF) and synaptotagmin I and the increase in post-synaptic protein PSD-95 in HFF rats. Overall, our investigation supports for the first time similarities in the response of adipose tissue and brain to Western diet.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta Ocidental , Metabolismo Energético , Adipócitos/metabolismo , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Especificidade de Órgãos , Ratos , Receptor trkB/metabolismo , Transdução de Sinais
3.
J Lipid Res ; 59(1): 48-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167408

RESUMO

Oxidative stress is a key mediator of autoimmune/neurodegenerative disorders. The antioxidant/anti-inflammatory effect of a synthetic conjugated linoleic acid (CLA) mixture in MRL/MpJ-Fas lpr mice (MRL/lpr), an animal model of neuropsychiatric lupus, was previously associated with the improvement of nuclear factor-E2-related factor 2 (Nrf2) defenses in the spleen and liver. However, little is known about the neuroprotective ability of a CLA mixture. This study investigated the age-dependent progression of oxidative stress and the hyperactivation of redox-sensitive compensatory pathways (macroautophagy, Nrf2) in old/diseased MRL/lpr mice brains and examines the effect produced by dietary CLA supplementation. Disrupted redox homeostasis was evidenced in the blood, liver, and brain of 21- to 22-week-old MRL/lpr (Old) mice compared with 8- to 10-week-old MRL/lpr (Young) animals. This alteration was associated with significant hyperactivation of compensatory mechanisms (macroautophagy, Nrf2, and astrocyte activation) in the brains of Old mice. Five-week daily supplementation with CLA (650 mg/kg-1 body weight) of 16-week-old (CLA+Old) mice diminished all the pathological hallmarks at a level comparable to Young mice or healthy controls (BALB/c). Such data demonstrated that MRL/lpr mice can serve as a valuable model for the evaluation of the effectiveness of neuroprotective drugs. Notably, the preventive effect provided by CLA supplementation against age-associated neuronal damage and hyperactivation of compensatory mechanisms suggests that the activation of an adaptive response is at least in part accountable for its neuroprotective ability.


Assuntos
Modelos Animais de Doenças , Ácidos Linoleicos Conjugados/farmacologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Administração Oral , Fatores Etários , Animais , Feminino , Ácidos Linoleicos Conjugados/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Degeneração Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
J Cell Physiol ; 233(9): 6925-6943, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29323721

RESUMO

In the central nervous system, cholesterol is critical to maintain membrane plasticity, cellular function, and synaptic integrity. In recent years, much attention was focused on the role of cholesterol in brain since a breakdown of cholesterol metabolism has been associated with different diseases. Brain-derived neurotrophic factor (BDNF) was previously reported to elicit cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-rich lipid rafts, but no data are available on its ability to modulate physiological mechanisms involved in cholesterol homeostasis. Major aim of this research was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. Our results show that BDNF significantly stimulates cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and ApoE expression. Conversely, cholesterol uptake in neurons was downregulated by BDNF. This effect was associated with the increase of Liver X Receptor (LXR)-beta expression in neuron exposed to BDNF. The level of apoptosis markers, that is, cleaved caspase 3 and poly ADP ribose polymerase (PARP), was found increased in neurons treated with high cholesterol, but significantly lower when the cells were exposed to cholesterol in the presence of BDNF, thus suggesting a neuroprotective role of the neurotrophin, likely through its reducing effect of neuronal cholesterol uptake. Interestingly, cholesterol stimulates BDNF production by neurons. Overall, our findings evidenced a novel role of BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells.


Assuntos
Apolipoproteínas E/biossíntese , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Neurônios/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Receptores X do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Biológicos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
5.
Eur J Nutr ; 54(2): 183-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24743896

RESUMO

PURPOSE: To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. METHODS: Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. RESULTS: Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. CONCLUSIONS: The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Metabolismo Energético , Frutose/efeitos adversos , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Ceramidas/metabolismo , Ingestão de Energia , Ácidos Graxos não Esterificados/sangue , Membro Posterior , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Canais Iônicos/metabolismo , Masculino , Mitocôndrias Musculares/enzimologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Fosforilação Oxidativa , Estresse Oxidativo , Ratos Sprague-Dawley , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Proteína Desacopladora 3 , Aumento de Peso
6.
J Neurochem ; 130(1): 97-108, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24620755

RESUMO

Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture.


Assuntos
Hidroxicolesteróis/antagonistas & inibidores , Hidroxicolesteróis/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Esterificação/efeitos dos fármacos , Esterificação/fisiologia , Humanos , Hidroxicolesteróis/toxicidade , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo
7.
Biofactors ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801155

RESUMO

The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.

8.
Br J Nutr ; 110(11): 1996-2003, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23693085

RESUMO

In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.


Assuntos
Frutose/efeitos adversos , Intolerância à Glucose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Oxidativo , Animais , Ceramidas/metabolismo , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/fisiopatologia , Hiperinsulinismo/etiologia , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Renovação Mitocondrial , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
9.
J Pept Sci ; 19(4): 220-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23420675

RESUMO

Apolipoprotein A-I (ApoA-I) is the main protein component of the high density lipoproteins and it plays an important role in the reverse cholesterol transport. In particular, it stimulates cholesterol efflux from peripheral cells toward liver and activates the enzyme lecithin-cholesterol acyltransferase (LCAT). Haptoglobin (Hpt), a plasma α2-glycoprotein belonging to the family of acute-phase proteins, binds to ApoA-I inhibiting the stimulation of the enzyme LCAT. Previously, we reported that a synthetic peptide, P2a, binds to and displaces Hpt from ApoA-I restoring the LCAT cholesterol esterification activity in the presence of Hpt. Here, we investigate the molecular determinants underlining the interaction between Hpt and P2a peptide. Analysis of truncated P2a analogs showed that P2a sequence can only be slight reduced in length at the N-terminal to preserve the ability of binding to Hpt. Binding assays showed that charged residues are not involved in Hpt recognition; actually, E146A and D157A substitutions increase the binding affinity to Hpt. Biological characterization of the corresponding P2a peptide analogs, Apo146 and Apo157, showed that the two peptides interfere with Hpt binding to HDL and are more effective than P2a peptide in rescue LCAT activity from Hpt inhibition. This result suggests novel hints to design peptides with anti-atherogenic activity.


Assuntos
Antibacterianos/química , Apolipoproteína A-I/química , Haptoglobinas/química , Peptídeos/química , Substituição de Aminoácidos , Antibacterianos/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Sítios de Ligação , Colesterol/química , Colesterol/genética , Colesterol/metabolismo , Feminino , Haptoglobinas/genética , Haptoglobinas/metabolismo , Humanos , Masculino , Peptídeos/genética , Peptídeos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
10.
Nucleic Acids Res ; 39(16): 7263-75, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624892

RESUMO

Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3'UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of 'RNA operon' may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3'UTR with same proteins.


Assuntos
Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Proteínas do Fator Nuclear 90/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas do Fator Nuclear 90/antagonistas & inibidores , Proteínas do Fator Nuclear 90/fisiologia , Óperon , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/fisiologia
11.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678346

RESUMO

BACKGROUND: The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS: Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS: Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS: A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.


Assuntos
Frutose , Proteômica , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Hipotálamo/metabolismo , Inflamação/metabolismo
12.
J Nutr Biochem ; 113: 109247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496062

RESUMO

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Tecido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
13.
Mol Neurobiol ; 60(2): 1004-1020, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394711

RESUMO

The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.


Assuntos
Acetilcolinesterase , Fator Neurotrófico Derivado do Encéfalo , Animais , Ratos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lobo Frontal/metabolismo , Frutose/efeitos adversos
14.
Front Nutr ; 10: 1236417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908302

RESUMO

Introduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results: The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion: From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.

15.
J Pharmacol Exp Ther ; 340(3): 716-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22171091

RESUMO

The acute-phase protein haptoglobin (Hpt) binds apolipoprotein A-I (ApoA-I) and impairs its action on lecithin-cholesterol acyltransferase, an enzyme that plays a key role in reverse cholesterol transport. We have previously shown that an ApoA-I mimetic peptide, P2a, displaces Hpt from ApoA-I, restoring the enzyme activity in vitro. The aim of this study was to evaluate whether P2a displaces Hpt from ApoA-I in vivo and whether this event leads to anti-inflammatory activity. Mice received subplantar injections of carrageenan. Paw volume was measured before the injection and 2, 4, 6, 24, 48, 72, and 96 h thereafter. At the same time points, concentrations of HDL cholesterol (C) and cholesterol esters (CEs) were measured by high-performance liquid chromatography, and Hpt and ApoA-I plasma levels were evaluated by enzyme-linked immunosorbent assay. Western blotting analysis for nitric-oxide synthase and cyclooxygenase (COX) isoforms was also performed on paw homogenates. CEs significantly decreased in carrageenan-treated mice during edema development and negatively correlated with the Hpt/ApoA-I ratio. P2a administration significantly restored the CE/C ratio. In addition, P2a displayed an anti-inflammatory effect on the late phase of edema with a significant reduction in COX2 expression coupled to an inhibition of prostaglandin E(2) synthesis, implying that, in the presence of P2a, CE/C ratio rescue and edema inhibition were strictly related. In conclusion, the P2a effect is due to its binding to Hpt with consequent displacement of ApoA-I that exerts anti-inflammatory activity. Therefore, it is feasible to design drugs that, by enhancing the physiological endogenous protective role of ApoA-I, may be useful in inflammation-based diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Apolipoproteína A-I/farmacologia , Ésteres do Colesterol/metabolismo , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Apolipoproteína A-I/sangue , Ciclo-Oxigenase 2/genética , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Edema/metabolismo , Esterificação , Haptoglobinas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia
16.
iScience ; 25(4): 104054, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345456

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf -/- compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf -/- larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf -/- zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental diseases.

17.
Biol Chem ; 392(4): 371-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21294680

RESUMO

Haptoglobin (Hpt) is known to capture circulating free hemoglobin (Hb) and bind apolipoprotein (Apo) A-I or E. Here, we report that Hb can be tightly bound by most of Hpt molecules (TB-Hpt, 80%), whereas loosely bound by a minor part of them (LB-Hpt, 20%). LB-Hpt amount was significantly increased (over 60%) in patients with acute coronary syndrome. LB-Hpt bound ApoA-I and ApoE less efficiently than TB-Hpt (8- and 4-fold less, respectively) and did not affect their activity of stimulating the enzyme lecithin-cholesterol acyltransferase. LB-Hpt and TB-Hpt displayed comparable levels of nitrotyrosine residues, but differences in glycan chains. Changes in LB-Hpt level might be associated with changes in Hpt functions.


Assuntos
Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/enzimologia , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Estudos de Casos e Controles , Haptoglobinas/farmacologia , Humanos , Lectinas/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica
18.
Nutrients ; 13(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921866

RESUMO

Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short-term fructose-rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose-rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose-rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose-rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl-CoA desaturase (SCD) activities were upregulated by fructose-rich diet, and SCD activity remained higher after returning to the control diet. Fructose-induced upregulation of complex II-driven mitochondrial respiration, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose-induced dysregulation of liver metabolic activity.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Ingestão de Alimentos/fisiologia , Frutose/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Alanina Transaminase/sangue , Animais , Composição Corporal , Ceramidas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/etiologia , Frutose/sangue , Haptoglobinas/metabolismo , Lipídeos/sangue , Lipocalinas/sangue , Lipopolissacarídeos/sangue , Fígado/metabolismo , Ratos , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/fisiologia , Ácido Úrico/sangue
19.
Antioxidants (Basel) ; 10(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804637

RESUMO

Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.

20.
Food Funct ; 12(16): 7557-7568, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286786

RESUMO

The link between increased fructose intake and induction of gut and liver dysfunction has been established, while it remains to be understood whether this damage is reversible, particularly in the young population, in which the intake of fructose has reached dramatic levels. To this end, young (30 days old) rats were fed a fructose-rich or control diet for 3 weeks to highlight the early response of the gut and liver to increased fructose intake. After this period, fructose-fed rats were returned to a control diet for 3 weeks and compared to the rats that received the control diet for the entire period to identify whether fructose-induced changes in the gut-liver axis persist or not after switching back to a control diet. Glucose transporter 5 and the tight junction protein occludin were assessed in the ileum and colon. Markers of inflammation and redox homeostasis as well as fructose and uric acid levels were also evaluated in the ileum, colon and liver. From the whole data, it is seen that metabolic derangement elicited by a fructose-rich diet, even after a brief period of intake, is fully reversed in the liver by a period of fructose withdrawal, while the alterations persist in the gut, especially in the ileum. In conclusion, given the increasing consumption of fructose-rich foods in young populations, the present results highlight the risk arising from gut persistent alterations even after the end of a fructose-rich diet. Therefore, dietary recommendations of reducing the intake of this simple sugar is mandatory to avoid not only the related metabolic alterations but also the persistence of these detrimental changes.


Assuntos
Dieta Saudável/métodos , Frutose/metabolismo , Trato Gastrointestinal/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Animais , Dieta/métodos , Modelos Animais de Doenças , Frutose/efeitos adversos , Frutose/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiopatologia , Inflamação/etiologia , Inflamação/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA