Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurooncol ; 131(1): 49-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27783195

RESUMO

Internal radiation strategies hold great promise for glioblastoma (GB) therapy. We previously developed a nanovectorized radiotherapy that consists of lipid nanocapsules loaded with a lipophilic complex of Rhenium-188 (LNC188Re-SSS). This approach resulted in an 83 % cure rate in the 9L rat glioma model, showing great promise. The efficacy of LNC188Re-SSS treatment was optimized through the induction of a T-cell immune response in this model, as it is highly immunogenic. However, this is not representative of the human situation where T-cell suppression is usually encountered in GB patients. Thus, in this study, we investigated the efficacy of LNC188Re-SSS in a human GB model implanted in T-cell deficient nude mice. We also analyzed the distribution and tissue retention of LNC188Re-SSS. We observed that intratumoral infusion of LNCs by CED led to their complete distribution throughout the tumor and peritumoral space without leakage into the contralateral hemisphere except when large volumes were used. Seventy percent of the 188Re-SSS activity was present in the tumor region 24 h after LNC188Re-SSS injection and no toxicity was observed in the healthy brain. Double fractionated internal radiotherapy with LNC188Re-SSS triggered survival responses in the immunocompromised human GB model with a cure rate of 50 %, which was not observed with external radiotherapy. In conclusion, LNC188Re-SSS can induce long-term survival in an immunosuppressive environment, highlighting its potential for GB therapy.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Nanocápsulas/uso terapêutico , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Rênio/uso terapêutico , Animais , Autorradiografia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Nanocápsulas/administração & dosagem , Radioisótopos/administração & dosagem , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Rênio/administração & dosagem , Rênio/farmacocinética , Linfócitos T/patologia , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Trends Pharmacol Sci ; 36(4): 236-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25799457

RESUMO

Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Nanomedicina/tendências , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Células Clonais/efeitos da radiação , Glioblastoma/genética , Humanos , Nanomedicina/métodos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA