Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1334006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464536

RESUMO

Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.


Assuntos
Sistema Imunitário , Mitocôndrias , Mitocôndrias/metabolismo , Metabolismo Energético
2.
J Nutr Biochem ; 128: 109624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518858

RESUMO

Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.


Assuntos
Córtex Cerebral , Metilação de DNA , Leite , Mitocôndrias , Sinapses , Animais , Córtex Cerebral/metabolismo , Leite/química , Leite/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Ratos , Masculino , Plasticidade Neuronal , Doenças Neuroinflamatórias/metabolismo , Feminino , Ratos Wistar , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA