Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39204047

RESUMO

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.

2.
Cells ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474403

RESUMO

Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.


Assuntos
Imunidade Adaptativa , Sepse , Humanos , Biomarcadores , Inflamação , Medicina de Precisão/métodos
3.
Nat Commun ; 15(1): 2752, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553477

RESUMO

Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.


Assuntos
COVID-19 , Imunossenescência , Esclerose Múltipla , Humanos , Imunossupressores/uso terapêutico , Cloridrato de Fingolimode/uso terapêutico , SARS-CoV-2 , Natalizumab/uso terapêutico , Eficácia de Vacinas , Vacinas de mRNA , COVID-19/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA