RESUMO
BACKGROUND: Emerging evidence suggests that shortened, simplified treatment regimens for rifampicin-resistant tuberculosis (RR-TB) can achieve comparable end-of-treatment (EOT) outcomes to longer regimens. We compared a 6-month regimen containing bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) to a standard of care strategy using a 9- or 18-month regimen depending on whether fluoroquinolone resistance (FQ-R) was detected on drug susceptibility testing (DST). METHODS AND FINDINGS: The primary objective was to determine whether 6 months of BPaLM is a cost-effective treatment strategy for RR-TB. We used genomic and demographic data to parameterize a mathematical model estimating long-term health outcomes measured in quality-adjusted life years (QALYs) and lifetime costs in 2022 USD ($) for each treatment strategy for patients 15 years and older diagnosed with pulmonary RR-TB in Moldova, a country with a high burden of TB drug resistance. For each individual, we simulated the natural history of TB and associated treatment outcomes, as well as the process of acquiring resistance to each of 12 anti-TB drugs. Compared to the standard of care, 6 months of BPaLM was cost-effective. This strategy was estimated to reduce lifetime costs by $3,366 (95% UI: [1,465, 5,742] p < 0.001) per individual, with a nonsignificant change in QALYs (-0.06; 95% UI: [-0.49, 0.03] p = 0.790). For those stopping moxifloxacin under the BPaLM regimen, continuing with BPaL plus clofazimine (BPaLC) provided more QALYs at lower cost than continuing with BPaL alone. Strategies based on 6 months of BPaLM had at least a 93% chance of being cost-effective, so long as BPaLC was continued in the event of stopping moxifloxacin. BPaLM for 6 months also reduced the average time spent with TB resistant to amikacin, bedaquiline, clofazimine, cycloserine, moxifloxacin, and pyrazinamide, while it increased the average time spent with TB resistant to delamanid and pretomanid. Sensitivity analyses showed 6 months of BPaLM to be cost-effective across a broad range of values for the relative effectiveness of BPaLM, and the proportion of the cohort with FQ-R. Compared to the standard of care, 6 months of BPaLM would be expected to save Moldova's national TB program budget $7.1 million (95% UI: [1.3 million, 15.4 million] p = 0.002) over the 5-year period from implementation. Our analysis did not account for all possible interactions between specific drugs with regard to treatment outcomes, resistance acquisition, or the consequences of specific types of severe adverse events, nor did we model how the intervention may affect TB transmission dynamics. CONCLUSIONS: Compared to standard of care, longer regimens, the implementation of the 6-month BPaLM regimen could improve the cost-effectiveness of care for individuals diagnosed with RR-TB, particularly in settings with a high burden of drug-resistant TB. Further research may be warranted to explore the impact and cost-effectiveness of shorter RR-TB regimens across settings with varied drug-resistant TB burdens and national income levels.
Assuntos
Antituberculosos , Análise Custo-Benefício , Moxifloxacina , Anos de Vida Ajustados por Qualidade de Vida , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Moldávia , Rifampina/uso terapêutico , Rifampina/economia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/economia , Antituberculosos/uso terapêutico , Antituberculosos/economia , Moxifloxacina/uso terapêutico , Moxifloxacina/economia , Adulto , Masculino , Feminino , Modelos Teóricos , Quimioterapia Combinada , Linezolida/uso terapêutico , Linezolida/economia , Diarilquinolinas/uso terapêutico , Diarilquinolinas/economia , Pessoa de Meia-Idade , Resultado do Tratamento , Esquema de Medicação , Adolescente , Mycobacterium tuberculosis/efeitos dos fármacosRESUMO
Applying whole-genome-sequencing, we aimed to detect transmission events of multidrug-resistant/rifampin-resistant strains of Mycobacterium tuberculosis complex at a tuberculosis hospital in Chisinau, Moldova. We recorded ward, room, and bed information for each patient and monitored in-hospital transfers over 1 year. Detailed molecular and patient surveillance revealed only 2 nosocomial transmission events.
Assuntos
Infecção Hospitalar , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Moldávia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Testes de Sensibilidade MicrobianaRESUMO
While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.
Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Canamicina , Isoniazida/farmacologia , Capreomicina , Amicacina/farmacologia , Rifampina/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: The incidence of multidrug-resistant tuberculosis (MDR-TB) remains critically high in countries of the former Soviet Union, where >20% of new cases and >50% of previously treated cases have resistance to rifampin and isoniazid. Transmission of resistant strains, as opposed to resistance selected through inadequate treatment of drug-susceptible tuberculosis (TB), is the main driver of incident MDR-TB in these countries. METHODS AND FINDINGS: We conducted a prospective, genomic analysis of all culture-positive TB cases diagnosed in 2018 and 2019 in the Republic of Moldova. We used phylogenetic methods to identify putative transmission clusters; spatial and demographic data were analyzed to further describe local transmission of Mycobacterium tuberculosis. Of 2,236 participants, 779 (36%) had MDR-TB, of whom 386 (50%) had never been treated previously for TB. Moreover, 92% of multidrug-resistant M. tuberculosis strains belonged to putative transmission clusters. Phylogenetic reconstruction identified 3 large clades that were comprised nearly uniformly of MDR-TB: 2 of these clades were of Beijing lineage, and 1 of Ural lineage, and each had additional distinct clade-specific second-line drug resistance mutations and geographic distributions. Spatial and temporal proximity between pairs of cases within a cluster was associated with greater genomic similarity. Our study lasted for only 2 years, a relatively short duration compared with the natural history of TB, and, thus, the ability to infer the full extent of transmission is limited. CONCLUSIONS: The MDR-TB epidemic in Moldova is associated with the local transmission of multiple M. tuberculosis strains, including distinct clades of highly drug-resistant M. tuberculosis with varying geographic distributions and drug resistance profiles. This study demonstrates the role of comprehensive genomic surveillance for understanding the transmission of M. tuberculosis and highlights the urgency of interventions to interrupt transmission of highly drug-resistant M. tuberculosis.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Moldávia/epidemiologia , Mycobacterium tuberculosis/genética , Filogenia , Filogeografia , Estudos Prospectivos , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
BACKGROUND: Recurrence of drug-resistant tuberculosis (DR-TB) after treatment occurs through relapse of the initial infection or reinfection by a new drug-resistant strain. Outbreaks of DR-TB in high burden regions present unique challenges in determining recurrence status for effective disease management and treatment. In the Republic of Moldova the burden of DR-TB is exceptionally high, with many cases presenting as recurrent. METHODS: We performed a retrospective analysis of Mycobacterium tuberculosis from Moldova to better understand the genomic basis of drug resistance and its effect on the determination of recurrence status in a high DR-burden environment. To do this we analyzed genomes from 278 isolates collected from 189 patients, including 87 patients with longitudinal samples. These pathogen genomes were sequenced using Illumina technology, and SNP panels were generated for each sample for use in phylogenetic and network analysis. Discordance between genomic resistance profiles and clinical drug-resistance test results was examined in detail to assess the possibility of mixed infection. RESULTS: There were clusters of multiple patients with 10 or fewer differences among DR-TB samples, which is evidence of person-to-person transmission of DR-TB. Analysis of longitudinally collected isolates revealed that many infections exhibited little change over time, though 35 patients demonstrated reinfection by divergent (number of differences > 10) lineages. Additionally, several same-lineage sample pairs were found to be more divergent than expected for a relapsed infection. Network analysis of the H3/4.2.1 clade found very close relationships among 61 of these samples, making differentiation of reactivation and reinfection difficult. There was discordance between genomic profile and clinical drug sensitivity test results in twelve samples, and four of these had low level (but not statistically significant) variation at DR SNPs suggesting low-level mixed infections. CONCLUSIONS: Whole-genome sequencing provided a detailed view of the genealogical structure of the DR-TB epidemic in Moldova, showing that reinfection may be more prevalent than currently recognized. We also found increased evidence of mixed infection, which could be more robustly characterized with deeper levels of genomic sequencing.
Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Antituberculosos/efeitos adversos , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Moldávia , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Estudos Retrospectivos , Adulto JovemRESUMO
BACKGROUND: Multidrug resistant tuberculosis (MDR-TB) represents a major public health concern in the Republic of Moldova, with an estimated 31% of new and 56% of previously treated TB cases having MDR disease in 2022. A recent genomic epidemiology study of incident TB occurring in 2018 and 2019 found that 92% of MDR-TB was the result of transmission. The MDR phenotype was concentrated among two M. tuberculosis (Mtb) lineages: L2.2.1 (Beijing) and L4.2.1 (Ural). METHODS: We developed and applied a hierarchical Bayesian multinominal logistic regression model to Mtb genomic, spatial, and epidemiological data collected from all individuals with diagnosed TB in Moldova in 2018 and 2019 to identify locations in which specific Mtb strains are being transmitted. We then used a logistic regression model to estimate locality-level factors associated with local transmission. FINDINGS: We found differences in the spatial distribution and degree of local concentration of disease due to specific strains of Beijing and Ural lineage Mtb. Foci of transmission for four strains of Beijing lineage Mtb, predominantly of the MDR-TB phenotype, were located in several regions, but largely concentrated in Transnistria. In contrast, transmission of Ural lineage Mtb had less marked patterns of spatial aggregation, with a single strain (also of the MDR phenotype) spatially clustered in southern Transnistria. We found a 30% (95% credible interval 2%-80%) increase in odds of a locality being a transmission cluster for each increase of 100 persons per square kilometer, while higher local tuberculosis incidence and poverty were not associated with a locality being a transmission focus. INTERPRETATION: Our results identified localities where specific Mtb transmission networks were concentrated and quantified the association between locality-level factors and focal transmission. This analysis revealed Transnistria as the primary area where specific Mtb strains (predominantly of the MDR-TB phenotype) were locally transmitted and suggests that targeted intensified case finding in this region may be an attractive policy option. FUNDING: Funding for this work was provided by the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Moldávia/epidemiologia , Modelos Logísticos , Teorema de Bayes , Genótipo , Tuberculose/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana MúltiplaRESUMO
The projected trajectory of multidrug resistant tuberculosis (MDR-TB) epidemics depends on the reproductive fitness of circulating strains of MDR M. tuberculosis (Mtb). Previous efforts to characterize the fitness of MDR Mtb have found that Mtb strains of the Beijing sublineage (Lineage 2.2.1) may be more prone to develop resistance and retain fitness in the presence of resistance-conferring mutations than other lineages. Using Mtb genome sequences from all culture-positive cases collected over two years in Moldova, we estimate the fitness of Ural (Lineage 4.2) and Beijing strains, the two lineages in which MDR is concentrated in the country. We estimate that the fitness of MDR Ural strains substantially exceeds that of other susceptible and MDR strains, and we identify several mutations specific to these MDR Ural strains. Our findings suggest that MDR Ural Mtb has been transmitting efficiently in Moldova and poses a substantial risk of spreading further in the region.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Moldávia/epidemiologia , Genótipo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
There is still incomplete knowledge of which Mycobacterium tuberculosis (Mtb) antigens can trigger distinct T cell responses at different stages of infection. Here, a proteome-wide screen of 20,610 Mtb-derived peptides in 21 patients mid-treatment for active tuberculosis (ATB) reveals IFNγ-specific T cell responses against 137 unique epitopes. Of these, 16% are recognized by two or more participants and predominantly derived from cell wall and cell processes antigens. There is differential recognition of antigens, including TB vaccine candidate antigens, between ATB participants and interferon-gamma release assay (IGRA + /-) individuals. We developed an ATB-specific peptide pool (ATB116) consisting of epitopes exclusively recognized by ATB participants. This pool can distinguish patients with pulmonary ATB from IGRA + /- individuals from various geographical locations, with a sensitivity of over 60% and a specificity exceeding 80%. This proteome-wide screen of T cell reactivity identified infection stage-specific epitopes and antigens for potential use in diagnostics and measuring Mtb-specific immune responses.
Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Epitopos de Linfócito T , Proteoma , Interferon gama , Tuberculose/microbiologia , Tuberculose Latente/diagnóstico , Peptídeos , Antígenos de BactériasRESUMO
OBJECTIVES: To assess associations between disease severity in index TB patients and QuantiFERON-TB Gold Plus (QFT-Plus) results in contacts, and predictors for QFT-Plus conversion in contacts over 6-12 months. METHODS: TB patients (n = 295) and the contacts (n = 1051) were enrolled during 2018-2021 with QFT-Plus performed at baseline and months 6 and 12. A strong CD8 response was defined as TB2 interferon gamma (IFN-γ) response minus TB1 >0.6 IU/ml and stringent conversion as change from QFT-plus negative to high-positive QFT-Plus (TB1 or TB2 IFN-γ responses >0.7 IU/ml). RESULTS: Contacts with index TB patients with sputum smear >1+ was associated with positive QFT-Plus compared to those without (p < 0.001). Contacts with index TB patients with bilateral lung disease were more likely to have strong CD8 responses than those without (p = 0.038). QFT-Plus stringent conversion occurred in 9.7% of contacts over 6-12 months. A TB1 IFN-γ response ≥0.03 IU/ml combined with a TB2 ≥0.06 IU/ml was predictive of a 19-fold increased risk for QFT-Plus stringent conversion in contacts (odd ratio 19.565 [8.484-45.116], p < 0.001). CONCLUSION: Bacterial burden and bilateral lung disease of index TB patients were associated with positive QFT-Plus and strong CD8 responses in contacts. TB1 and TB2 IFN-γ responses were synergistically predictive of stringent conversion in contacts.
Assuntos
Tuberculose Latente , Pneumopatias , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose Latente/diagnóstico , Testes de Liberação de Interferon-gama/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Interferon gama , Teste Tuberculínico/métodosRESUMO
Tuberculosis caused by Mycobacterium tuberculosis is one of the leading causes of death from a single infectious agent. Identifying dominant epitopes and comparing their reactivity in different tuberculosis (TB) infection states can help design diagnostics and vaccines. We performed a proteome-wide screen of 20,610 Mtb derived peptides in 21 Active TB (ATB) patients 3-4 months post-diagnosis of pulmonary TB (mid-treatment) using an IFNγ and IL-17 Fluorospot assay. Responses were mediated exclusively by IFNγ and identified a total of 137 unique epitopes, with each patient recognizing, on average, 8 individual epitopes and 22 epitopes (16%) recognized by 2 or more participants. Responses were predominantly directed against antigens part of the cell wall and cell processes category. Testing 517 peptides spanning TB vaccine candidates and ESAT-6 and CFP10 antigens also revealed differential recognition between ATB participants mid-treatment and healthy IGRA+ participants of several vaccine antigens. An ATB-specific peptide pool consisting of epitopes exclusively recognized by participants mid-treatment, allowed distinguishing participants with active pulmonary TB from healthy interferon-gamma release assay (IGRA)+/- participants from diverse geographical locations. Analysis of longitudinal samples indicated decreased reactivity during treatment for pulmonary TB. Together, these results show that a proteome-wide screen of T cell reactivity identifies epitopes and antigens that are differentially recognized depending on the Mtb infection stage. These have potential use in developing diagnostics and vaccine candidates and measuring correlates of protection.
Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Isoniazida , Antituberculosos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos MedicamentosRESUMO
Background: Limited access to drug-susceptibility tests (DSTs) and delays in receiving DST results are challenges for timely and appropriate treatment of multi-drug resistant tuberculosis (TB) in many low-resource settings. We investigated whether data collected as part of routine, national TB surveillance could be used to develop predictive models to identify additional resistance to fluoroquinolones (FLQs), a critical second-line class of anti-TB agents, at the time of diagnosis with rifampin-resistant TB. Methods and findings: We assessed three machine learning-based models (logistic regression, neural network, and random forest) using information from 540 patients with rifampicin-resistant TB, diagnosed using Xpert MTB/RIF and notified in the Republic of Moldova between January 2018 and December 2019. The models were trained to predict the resistance to FLQs based on demographic and TB clinical information of patients and the estimated district-level prevalence of resistance to FLQs. We compared these models based on the optimism-corrected area under the receiver operating characteristic curve (OC-AUC-ROC). The OC-AUC-ROC of all models were statistically greater than 0.5. The neural network model, which utilizes twelve features, performed best and had an estimated OC-AUC-ROC of 0.87 (0.83,0.91), which suggests reasonable discriminatory power. A limitation of our study is that our models are based only on data from the Republic of Moldova and since not externally validated, the generalizability of these models to other populations remains unknown. Conclusions: Models trained on data from phenotypic surveillance of drug-resistant TB can predict resistance to FLQs based on patient characteristics at the time of diagnosis with rifampin-resistant TB using Xpert MTB/RIF, and information about the local prevalence of resistance to FLQs. These models may be useful for informing the selection of antibiotics while awaiting results of DSTs.
RESUMO
BACKGROUND: The WHO End TB Strategy requires drug susceptibility testing and treatment of all people with tuberculosis, but second-line diagnostic testing with line-probe assays needs to be done in experienced laboratories with advanced infrastructure. Fewer than half of people with drug-resistant tuberculosis receive appropriate treatment. We assessed the diagnostic accuracy of the rapid Xpert MTB/XDR automated molecular assay (Cepheid, Sunnyvale, CA, USA) to overcome these limitations. METHODS: We did a prospective study involving individuals presenting with pulmonary tuberculosis symptoms and at least one risk factor for drug resistance in four sites in India (New Delhi and Mumbai), Moldova, and South Africa between July 31, 2019, and March 21, 2020. The Xpert MTB/XDR assay was used as a reflex test to detect resistance to isoniazid, fluoroquinolones, ethionamide, amikacin, kanamycin, and capreomycin in adults with positive results for Mycobacterium tuberculosis complex on Xpert MTB/RIF or Ultra (Cepheid). Diagnostic performance was assessed against a composite reference standard of phenotypic drug-susceptibility testing and whole-genome sequencing. This study is registered with ClinicalTrials.gov, number NCT03728725. FINDINGS: Of 710 participants, 611 (86%) had results from both Xpert MTB/XDR and the reference standard for any drug and were included in analysis. Sensitivity for Xpert MTB/XDR detection of resistance was 94% (460 of 488, 95% CI 92-96) for isoniazid, 94% (222 of 235, 90-96%) for fluoroquinolones, 54% (178 of 328, 50-61) for ethionamide, 73% (60 of 82, 62-81) for amikacin, 86% (181 of 210, 81-91) for kanamycin, and 61% (53 of 87, 49-70) for capreomycin. Specificity was 98-100% for all drugs. Performance was equivalent to that of line-probe assays. The non-determinate rate of Xpert MTB/XDR (ie, invalid M tuberculosis complex detection) was 2·96%. INTERPRETATION: The Xpert MTB/XDR assay showed high diagnostic accuracy and met WHO's minimum target product profile criteria for a next-generation drug susceptibility test. The assay has the potential to diagnose drug-resistant tuberculosis rapidly and accurately and enable optimum treatment. FUNDING: German Federal Ministry of Education and Research through KfW, Dutch Ministry of Foreign Affairs, and Australian Department of Foreign Affairs and Trade.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Austrália , Capreomicina/farmacologia , Capreomicina/uso terapêutico , Estudos Transversais , Farmacorresistência Bacteriana , Etionamida/farmacologia , Etionamida/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/uso terapêutico , Canamicina/farmacologia , Canamicina/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Estudos Prospectivos , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: The lack of accurate and efficient diagnostic devices for extensively drug-resistant tuberculosis (XDR-TB) makes it a severe threat to global public health. A prospective clinical study in an intended-use cohort was designed to evaluate the Akonni Biosystems XDR-TB TruArray and lateral flow cell (XDR-LFC) to address this gap in tuberculosis diagnostics. OBJECTIVE: This paper presents the protocol for a study that aims to document the conceptualization and design of this evaluation method for early dissemination while data collection and analysis are ongoing. METHODS: The clinical study was conducted in three phases. The first phase was to observe changes in bacterial load and culture positivity in patient sputa over time and better understand the diversity of prospective clinical samples. The second phase was to prospectively collect clinical samples for sensitivity and specificity testing of the Akonni Biosystems XDR-LFC device. Lastly, the third phase was to explore the anti-TB drug concentrations in serum throughout the drug-resistant tuberculosis treatment. RESULTS: The methodology described includes the study design, laboratory sample handling, data collection, and the protection elements of human subjects of this clinical study to evaluate a potential new XDR-TB diagnostic device. A total of 664 participants were enrolled across the three phases. The implemented complex systems facilitated a thorough clinical data collection for an objective evaluation of the device. The study is closed to recruitment. The follow-up data collection and analysis are in progress. CONCLUSIONS: This paper outlined a prospective cohort study protocol to evaluate a rapid XDR-TB detection device, which may be informative for other researchers with similar goals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26748.
RESUMO
The evolution and emergence of drug-resistant tuberculosis (TB) has been studied extensively in some contexts, but the ecological drivers of these two processes remain poorly understood. This study sought to describe the joint evolutionary and epidemiological histories of a novel multidrug-resistant Mycobacterium tuberculosis strain recently identified in the capital city of the Republic of Moldova (MDR Ural/4.2), where genomic surveillance of drug-resistant M. tuberculosis has been limited thus far. Using whole genome sequence data and Bayesian phylogenomic methods, we reconstruct the stepwise acquisition of drug resistance mutations in the MDR Ural/4.2 strain, estimate its historical bacterial population size over time, and infer the migration history of this strain between Eastern European countries. We infer that MDR Ural/4.2 likely evolved (via acquisition of rpoB S450L, which confers resistance to rifampin) in the early 1990s, during a period of social turmoil following Moldovan independence from the Soviet Union. This strain subsequently underwent substantial population size expansion in the early 2000s, at a time when national guidelines encouraged inpatient treatment of TB patients. We infer exportation of this strain and its isoniazid-resistant ancestral precursor from Moldova to neighbouring countries starting as early as 1985. Our findings suggest temporal and ecological associations between specific public health practices, including inpatient hospitalization of drug-resistant TB cases from the early 2000s until 2013, and the evolution of drug-resistant M. tuberculosis in Moldova. These findings underscore the need for regional coordination in TB control and expanded genomic surveillance efforts across Eastern Europe.
Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/classificação , Tuberculose Resistente a Múltiplos Medicamentos/genética , Teorema de Bayes , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genômica , Humanos , Masculino , Moldávia/epidemiologia , Epidemiologia Molecular , Mutação , Mycobacterium tuberculosis/classificação , Filogenia , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do GenomaRESUMO
Tuberculosis (TB) diagnosis is increasingly based on the detection of Mycobacterium tuberculosis complex (MTBC) DNA in sputum using molecular diagnostic tests as the first test for diagnosis. However, sputum can be difficult to obtain in children, patients without productive cough, and the elderly and approaches testing non-sputum samples are needed. We evaluated whether TB can be detected from the oral mucosa of patients with TB. Adults with presumptive TB were examined using culture, Xpert MTB/RIF, smear microscopy and X-Rays. Oral mucosa swabs collected on PrimeStore-MTM, stored at room temperature if tested within 30 days or at -20 °C if examined at a later time. RT-PCR was performed to detect M. tuberculosis DNA. Eighty patients had bacteriologically-confirmed TB, 34 had bacteriologically-negative TB (negative tests but abnormal X-rays) and 152 were considered not to have TB (not TB). Oral swabs RT-PCR were positive in 29/80 (36.3%) bacteriologically-confirmed, 9/34 (26.5%) bacteriologically-negative and 29/152 (19.1%) not TB. The yield varied among samples stored for less and more than 30 days (p = 0.013) from 61% (11/18) and 29% (18/62) among bacteriologically confirmed, and 30.8% (4/13) and 23.8% (5/21) among bacteriologically-negative participants. Among not TB patients, the specificity was 80.9% (123/152), being 78.3% (18/23) among samples stored less than 30 days and 81.4% (105/129) among samples stored for more than 30 days (p = 0.46). The detection of M. tuberculosis in oral mucosa samples is feasible, but storage conditions may affect the yield.