Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(1): e0109623, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38038476

RESUMO

Results from clinical strains and knockouts of the H37Rv and CDC1551 laboratory strains demonstrated that ndh (Rv1854c) is not a resistance-conferring gene for isoniazid, ethionamide, delamanid, or pretomanid in Mycobacterium tuberculosis. This difference in the susceptibility to NAD-adduct-forming drugs compared with other mycobacteria may be driven by differences in the absolute intrabacterial NADH concentration.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Etionamida/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mutação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
Clin Microbiol Rev ; 35(3): e0022721, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311552

RESUMO

Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/uso terapêutico , Substâncias Perigosas , Humanos , Mycobacterium tuberculosis/genética , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
3.
Emerg Infect Dis ; 27(3): 985-987, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33622487

RESUMO

We surveyed availability of phenotypic drug susceptibility testing for drug-resistant Mycobacterium tuberculosis in Europe. Of 27 laboratories, 17 tested for linezolid, 11 for clofazimine, 9 for bedaquiline, and 6 for delamanid during 2019. Our findings indicate that testing capacity for newer and repurposed tuberculosis drugs exists, but its availability is limited.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/uso terapêutico , Diarilquinolinas , Europa (Continente) , Humanos , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
4.
Mol Med ; 27(1): 129, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663207

RESUMO

BACKGROUND: Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. METHODS: We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. RESULTS: Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233-0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547-0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. CONCLUSIONS: CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19.


Assuntos
COVID-19/diagnóstico , Quimiocina CXCL10/sangue , Doença da Artéria Coronariana/diagnóstico , Diabetes Mellitus/diagnóstico , Hipertensão/diagnóstico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19/sangue , COVID-19/imunologia , COVID-19/mortalidade , Comorbidade , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/mortalidade , Creatina/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/imunologia , Diabetes Mellitus/mortalidade , Feminino , Hospitalização , Humanos , Hipertensão/sangue , Hipertensão/imunologia , Hipertensão/mortalidade , Imunidade Humoral , Imunidade Inata , Inflamação , Unidades de Terapia Intensiva , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/patologia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Sobrevida
5.
N Engl J Med ; 379(15): 1403-1415, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30280646

RESUMO

BACKGROUND: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. METHODS: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. RESULTS: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. CONCLUSIONS: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.).


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Sequenciamento Completo do Genoma , Antituberculosos/uso terapêutico , Etambutol/farmacologia , Genótipo , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Pirazinamida/farmacologia , Rifampina/farmacologia , Tuberculose/microbiologia
6.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33298611

RESUMO

We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for Mycobacterium tuberculosis The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in M. tuberculosis and analyzes melting temperatures (Tm s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules. The assay can differentiate low- versus high-level resistance to INH and FLQ as well as cross-resistance versus individual resistance to SLIDs by identifying mutation-specific Tm s or Tm patterns generated by the SMB probes. The assay has a limit of detection comparable to that of the Xpert MTB/RIF assay and successfully detected 16 clinically significant mutations in a challenge set of clinical isolate DNA. In a clinical study performed at two sites with 100 sputum and 214 clinical isolates, the assay showed a sensitivity of 94% to 100% and a specificity of 100% for all drugs except for ETH compared to that of sequencing. The sensitivity and specificity were in the same ranges as those of phenotypic drug-susceptibility testing. Used in combination with a primary tuberculosis diagnostic test, this assay should expand the capacity for detection of drug-resistant tuberculosis near the point of care.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Testes Diagnósticos de Rotina , Resistência a Medicamentos , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Sistemas Automatizados de Assistência Junto ao Leito , Reflexo , Rifampina , Sensibilidade e Especificidade , Escarro , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
7.
Clin Infect Dis ; 70(8): 1774-1780, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560376

RESUMO

Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a person-centered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination.


Assuntos
Pesquisa Operacional , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Estudos Prospectivos , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle
8.
Artigo em Inglês | MEDLINE | ID: mdl-32571824

RESUMO

False-susceptible phenotypic drug-susceptibility testing (DST) results for pyrazinamide due to mutations with MICs close to the critical concentration (CC) confound the classification of pncA resistance mutations, leading to an underestimate of the specificity of genotypic DST. This could be minimized by basing treatment decisions on well-understood mutations and by adopting an area of technical uncertainty for phenotypic DST rather than only testing the CC, as is current practice for the Mycobacterium tuberculosis complex.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Amidoidrolases/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Pirazinamida/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
9.
Eur Respir J ; 56(4)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32586885

RESUMO

Major epidemics, including some that qualify as pandemics, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), HIV, influenza A (H1N1)pdm/09 and most recently COVID-19, affect the lung. Tuberculosis (TB) remains the top infectious disease killer, but apart from syndemic TB/HIV little is known regarding the interaction of viral epidemics and pandemics with TB. The aim of this consensus-based document is to describe the effects of viral infections resulting in epidemics and pandemics that affect the lung (MERS, SARS, HIV, influenza A (H1N1)pdm/09 and COVID-19) and their interactions with TB. A search of the scientific literature was performed. A writing committee of international experts including the European Centre for Disease Prevention and Control Public Health Emergency (ECDC PHE) team, the World Association for Infectious Diseases and Immunological Disorders (WAidid), the Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Mycobacterial Infections (ESGMYC) was established. Consensus was achieved after multiple rounds of revisions between the writing committee and a larger expert group. A Delphi process involving the core group of authors (excluding the ECDC PHE team) identified the areas requiring review/consensus, followed by a second round to refine the definitive consensus elements. The epidemiology and immunology of these viral infections and their interactions with TB are discussed with implications for diagnosis, treatment and prevention of airborne infections (infection control, viral containment and workplace safety). This consensus document represents a rapid and comprehensive summary on what is known on the topic.


Assuntos
Infecções Respiratórias/epidemiologia , Tuberculose/epidemiologia , Viroses/epidemiologia , Vacina BCG/uso terapêutico , Betacoronavirus , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Epidemias , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Pulmão/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Saúde Pública , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/imunologia , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/prevenção & controle , Viroses/diagnóstico , Viroses/tratamento farmacológico , Viroses/imunologia
10.
J Clin Microbiol ; 58(10)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32727827

RESUMO

Targeted next-generation sequencing (tNGS) has emerged as a comprehensive alternative to existing methods for drug susceptibility testing (DST) of Mycobacterium tuberculosis from patient sputum samples for clinical diagnosis of drug-resistant tuberculosis (DR-TB). However, the complexity of sequencing platforms has limited their uptake in low-resource settings. The goal of this study was to evaluate the use of the tNGS-based DST solution Genoscreen Deeplex Myc-TB, for use on the compact, low-cost Oxford Nanopore Technologies MinION sequencer. One hundred four DNA samples extracted from smear-positive sputum sediments, previously sequenced using the Deeplex assay on an Illumina MiniSeq, were resequenced on MinION after applying a custom library preparation. MinION read quality, mapping statistics, and variant calling were computed using an in-house pipeline and compared to the reference MiniSeq data. The average percentage of MinION reads mapped to an H37RV reference genome was 90.8%, versus 99.5% on MiniSeq. The mean depths of coverage were 4,151× and 4,177× on MinION and MiniSeq, respectively, with heterogeneous distribution across targeted genes. Composite reference coverage breadth was >99% for both platforms. We observed full concordance between technologies in reporting the clinically relevant drug-resistant markers, including full gene deletions. In conclusion, we demonstrated that the workflow and sequencing data obtained from Deeplex on MinION are comparable to those for the MiniSeq, despite the higher raw error rates on MinION, with the added advantage of MinION's portability, versatility, and low capital costs. Targeted NGS on MinION is a promising DST solution for rapidly providing clinically relevant data to manage complex DR-TB cases.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
12.
Clin Infect Dis ; 69(9): 1631-1633, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30883637

RESUMO

Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug-resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly, and time consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial-resistant genotypes that can be detected at once. Next-generation sequencing (NGS) offers the opportunity for rapid, comprehensive DST without the time or cost burden of phenotypic tests and can provide useful information for global surveillance. As access to NGS expands, it will be important to ensure that results are communicated clearly, consistent, comparable between laboratories, and associated with clear guidance on clinical interpretation of results. In this viewpoint article, we summarize 2 expert workshops regarding a standardized report format, focusing on relevant variables, terminology, and required minimal elements for clinical and laboratory reports with a proposed standardized template for clinical reporting NGS results for Mycobacterium tuberculosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
13.
Emerg Infect Dis ; 25(3): 564-568, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789124

RESUMO

In a 12-month nationwide study on the prevalence of drug-resistant tuberculosis (TB) in Lebanon, we identified 3 multidrug-resistant cases and 3 extensively drug-resistant TB cases in refugees, migrants, and 1 Lebanon resident. Enhanced diagnostics, particularly in major destinations for refugees, asylum seekers, and migrant workers, can inform treatment decisions and may help prevent the spread of drug-resistant TB.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Feminino , Genes Bacterianos , Genótipo , História do Século XXI , Humanos , Líbano/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/história , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
14.
J Infect Dis ; 217(6): 933-942, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29216403

RESUMO

Background: Staphylococcus aureus and Pseudomonas aeruginosa are key bacterial pathogens of the respiratory tract in patients with cystic fibrosis (CF). Although P. aeruginosa chronic bronchial infection is associated with a poorer prognosis, the consequences of S. aureus colonization on CF outcomes are controversial. Methods: In this paper, murine models of infection resembling traits of the CF human airways disease have been revisited using an infection schedule that mimics the sequence of events of pulmonary disease in CF patients. First, mice were infected with S. aureus, embedded in agar beads; this was followed by P. aeruginosa infection and analysis of bacterial load, leukocyte infiltration, and lung tissue damage. Results: We reveal that (1) S. aureus promotes severe lesions including abscess formation, (2) S. aureus increases the risk of subsequent chronic P. aeruginosa respiratory infection, and (3) once the chronic infection has been established, P. aeruginosa influences most of the inflammatory responses independent of S. aureus. Conclusions: Our findings established the significance of S. aureus colonization per se and the impact on the subsequent P. aeruginosa infection. This would point towards a thorough assessment for the need of treatment against S. aureus.


Assuntos
Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/complicações , Staphylococcus aureus/patogenicidade , Animais , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/complicações , Infecções Estafilocócicas/microbiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-29941636

RESUMO

The UKMYC5 plate is a 96-well microtiter plate designed by the CRyPTIC Consortium (Comprehensive Resistance Prediction for Tuberculosis: an International Consortium) to enable the measurement of MICs of 14 different antituberculosis (anti-TB) compounds for >30,000 clinical Mycobacterium tuberculosis isolates. Unlike the MYCOTB plate, on which the UKMYC5 plate is based, the UKMYC5 plate includes two new (bedaquiline and delamanid) and two repurposed (clofazimine and linezolid) compounds. UKMYC5 plates were tested by seven laboratories on four continents by use of a panel of 19 external quality assessment (EQA) strains, including H37Rv. To assess the optimal combination of reading method and incubation time, MICs were measured from each plate by two readers, using three methods (mirrored box, microscope, and Vizion digital viewing system), after 7, 10, 14, and 21 days of incubation. In addition, all EQA strains were subjected to whole-genome sequencing and phenotypically characterized by the 7H10/7H11 agar proportion method (APM) and by use of MGIT960 mycobacterial growth indicator tubes. We concluded that the UKMYC5 plate is optimally read using the Vizion system after 14 days of incubation, achieving an interreader agreement of 97.9% and intra- and interlaboratory reproducibility rates of 95.6% and 93.1%, respectively. The mirrored box had a similar reproducibility. Strains classified as resistant by APM, MGIT960, or the presence of mutations known to confer resistance consistently showed elevated MICs compared to those for strains classified as susceptible. Finally, the UKMYC5 plate records intermediate MICs for one strain for which the APM measured MICs close to the applied critical concentration, providing early evidence that the UKMYC5 plate can quantitatively measure the magnitude of resistance to anti-TB compounds that is due to specific genetic variation.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/farmacologia , Oxazóis/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose/tratamento farmacológico , Clofazimina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Linezolida/farmacologia , Testes de Sensibilidade Microbiana/métodos , Reprodutibilidade dos Testes
16.
J Clin Microbiol ; 56(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540456

RESUMO

Low-level rifampin resistance associated with specific rpoB mutations (referred as "disputed") in Mycobacterium tuberculosis is easily missed by some phenotypic methods. To understand the mechanism by which some mutations are systematically missed by MGIT phenotypic testing, we performed an in silico analysis of their effect on the structural interaction between the RpoB protein and rifampin. We also characterized 24 representative clinical isolates by determining MICs on 7H10 agar and testing them by an extended MGIT protocol. We analyzed 2,097 line probe assays, and 156 (7.4%) cases showed a hybridization pattern referred to here as "no wild type + no mutation." Isolates harboring "disputed" mutations (L430P, D435Y, H445C/L/N/S, and L452P) tested susceptible in MGIT, with prevalence ranging from 15 to 57% (overall, 16 out of 55 isolates [29%]). Our in silico analysis did not highlight any difference between "disputed" and "undisputed" substitutions, indicating that all rpoB missense mutations affect the rifampin binding site. MIC testing showed that "undisputed" mutations are associated with higher MIC values (≥20 mg/liter) compared to "disputed" mutations (4 to >20 mg/liter). Whereas "undisputed" mutations didn't show any delay (Δ) in time to positivity of the test tube compared to the control tube on extended MGIT protocol, "disputed" mutations showed a mean Δ of 7.2 days (95% confidence interval [CI], 4.2 to 10.2 days; P < 0.05), providing evidence that mutations conferring low-level resistance are associated with a delay in growth on MGIT. Considering the proved relevance of L430P, D435Y, H445C/L/N, and L452P mutations in determining clinical resistance, genotypic drug susceptibility testing (DST) should be used to replace phenotypic results (MGIT) when such mutations are found.


Assuntos
Antibióticos Antituberculose/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Genótipo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Rifampina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Fatores de Tempo , Tuberculose/microbiologia
18.
Int J Syst Evol Microbiol ; 68(11): 3557-3562, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30204586

RESUMO

Two mycobacterial strains with close similarity to the Mycobacterium tuberculosis complex (MTBC) were isolated from cutaneous lesions of patients in the USA and Italy. At the phenotypic level, similarities to the MTBC included slow growth rate, rough morphotype of the unpigmented colonies and nearly identical high-performance liquid chromatography profiles of mycolic acids. In contrast to the MTBC, the strains were niacin- and nitrate-negative, and catalase-positive both at 68 °C and in semi-quantitative tests. The clinical isolates were more closely related to M. tuberculosis than to any other known mycobacterium and scored positive with commercial DNA probes (Hologic AccuProbe M. tuberculosis). Both average nucleotide identity and genome-to-genome distance suggested the strains are different from the MTBC. Therefore, given the distinguishing phenotypic and genomic-scale differences, we submit that the strains belong to a new species we have named Mycobacteriumdecipiens with type strain TBL 1200985T (=ATCC TSD-117T=DSM 105360T).


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/classificação , Filogenia , Tuberculose Cutânea/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Humanos , Itália , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Mycobacterium tuberculosis , Ácidos Micólicos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estados Unidos
20.
Eur Respir J ; 50(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284687

RESUMO

A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Interpretação Estatística de Dados , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Fenótipo , Análise de Sequência de DNA , Revisões Sistemáticas como Assunto , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA