Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 33(11): 12374-12391, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404503

RESUMO

AMPK is a central regulator of energy homeostasis. AMPK not only elicits acute metabolic responses but also promotes metabolic reprogramming and adaptations in the long-term through regulation of specific transcription factors and coactivators. We performed a whole-genome transcriptome profiling in wild-type (WT) and AMPK-deficient mouse embryonic fibroblasts (MEFs) and primary hepatocytes that had been treated with 2 distinct classes of small-molecule AMPK activators. We identified unique compound-dependent gene expression signatures and several AMPK-regulated genes, including folliculin (Flcn), which encodes the tumor suppressor FLCN. Bioinformatics analysis highlighted the lysosomal pathway and the associated transcription factor EB (TFEB) as a key transcriptional mediator responsible for AMPK responses. AMPK-induced Flcn expression was abolished in MEFs lacking TFEB and transcription factor E3, 2 transcription factors with partially redundant function; additionally, the promoter activity of Flcn was profoundly reduced when its putative TFEB-binding site was mutated. The AMPK-TFEB-FLCN axis is conserved across species; swimming exercise in WT zebrafish induced Flcn expression in muscle, which was significantly reduced in AMPK-deficient zebrafish. Mechanistically, we have found that AMPK promotes dephosphorylation and nuclear localization of TFEB independently of mammalian target of rapamycin activity. Collectively, we identified the novel AMPK-TFEB-FLCN axis, which may function as a key cascade for cellular and metabolic adaptations.-Collodet, C., Foretz, M., Deak, M., Bultot, L., Metairon, S., Viollet, B., Lefebvre, G., Raymond, F., Parisi, A., Civiletto, G., Gut, P., Descombes, P., Sakamoto, K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Transporte Ativo do Núcleo Celular , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Camundongos , Fosforilação , Ribonucleotídeos/farmacologia , Peixe-Zebra
2.
Mol Ther ; 22(1): 10-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24247928

RESUMO

Mutations in human MPV17 cause a hepatocerebral form of mitochondrial DNA depletion syndrome (MDS) hallmarked by early-onset liver failure, leading to premature death. Liver transplantation and frequent feeding using slow-release carbohydrates are the only available therapies, although surviving patients eventually develop slowly progressive peripheral and central neuropathy. The physiological role of Mpv17, including its functional link to mitochondrial DNA (mtDNA) maintenance, is still unclear. We show here that Mpv17 is part of a high molecular weight complex of unknown composition, which is essential for mtDNA maintenance in critical tissues, i.e. liver, of a Mpv17 knockout mouse model. On a standard diet, Mpv17-/- mouse shows hardly any symptom of liver dysfunction, but a ketogenic diet (KD) leads these animals to liver cirrhosis and failure. However, when expression of human MPV17 is carried out by adeno-associated virus (AAV)-mediated gene replacement, the Mpv17 knockout mice are able to reconstitute the Mpv17-containing supramolecular complex, restore liver mtDNA copy number and oxidative phosphorylation (OXPHOS) proficiency, and prevent liver failure induced by the KD. These results open new therapeutic perspectives for the treatment of MPV17-related liver-specific MDS.


Assuntos
DNA Mitocondrial , Dependovirus/genética , Dieta Cetogênica/efeitos adversos , Vetores Genéticos/genética , Falência Hepática/etiologia , Falência Hepática/terapia , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética , Vetores Genéticos/administração & dosagem , Genótipo , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Falência Hepática/patologia , Falência Hepática/prevenção & controle , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Peso Molecular , Fenótipo , Multimerização Proteica
3.
Cardiovasc Res ; 119(12): 2213-2229, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395010

RESUMO

AIMS: Mitochondrial Complex I assembly (MCIA) is a multi-step process that necessitates the involvement of a variety of assembly factors and chaperones to ensure that the final active enzyme is correctly assembled. The role of the assembly factor evolutionarily conserved signalling intermediate in the toll (ECSIT) pathway was studied across various murine tissues to determine its role in this process and how this varied between tissues of varying energetic demands. We hypothesized that many of the known functions of ECSIT were unhindered by the introduction of an ENU-induced mutation, while its role in Complex I assembly was affected on a tissue-specific basis. METHODS AND RESULTS: Here, we describe a mutation in the MCIA factor ECSIT that reveals tissue-specific requirements for ECSIT in Complex I assembly. MCIA is a multi-step process dependent on assembly factors that organize and arrange the individual subunits, allowing for their incorporation into the complete enzyme complex. We have identified an ENU-induced mutation in ECSIT (N209I) that exhibits a profound effect on Complex I component expression and assembly in heart tissue, resulting in hypertrophic cardiomyopathy in the absence of other phenotypes. The dysfunction of Complex I appears to be cardiac specific, leading to a loss of mitochondrial output as measured by Seahorse extracellular flux and various biochemical assays in heart tissue, while mitochondria from other tissues were unaffected. CONCLUSIONS: These data suggest that the mechanisms underlying Complex I assembly and activity may have tissue-specific elements tailored to the specific demands of cells and tissues. Our data suggest that tissues with high-energy demands, such as the heart, may utilize assembly factors in different ways to low-energy tissues in order to improve mitochondrial output. These data have implications for the diagnosis and treatment of various disorders of mitochondrial function as well as cardiac hypertrophy with no identifiable underlying genetic cause.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Camundongos , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação
4.
Am J Hematol ; 85(5): 331-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20425795

RESUMO

Acute myeloid leukemia (AML) the most common acute leukemia in adults is characterized by various cytogenetic and molecular abnormalities. However, the genetic etiology of the disease is not yet fully understood. MicroRNAs (miRNA) are small noncoding RNAs which regulate the expression of target mRNAs both at transcriptional and translational level. In recent years, miRNAs have been identified as a novel mechanism in gene regulation, which show variable expression during myeloid differentiation. We studied miRNA expression of leukemic blasts of 29 cases of newly diagnosed and genetically defined AML using quantitative reverse transcription polymerase chain reaction (RT-PCR) for 365 human miRNA. We showed that miRNA expression profiling reveals distinctive miRNA signatures that correlate with cytogenetic and molecular subtypes of AML. Specific miRNAs with consolidated role on cell proliferation and differentiation such as miR-155, miR-221, let-7, miR-126 and miR-196b appear to be associated with particular subtypes. We observed a significant differentially expressed miRNA profile that characterizes two subgroups of AML with different mechanism of leukemogenesis: core binding factor (CBF) and cytogenetically normal AML with mutations in the genes of NPM1 and FLT3-ITD. We demonstrated, for the first time, the inverse correlation of expression levels between miRNA and their targets in specific AML genetic groups. We suggest that miRNA deregulation may act as complementary hit in the multisteps mechanism of leukemogenesis offering new therapeutic strategies.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Precursoras de Granulócitos/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/fisiopatologia , MicroRNAs/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Fatores de Ligação ao Core/fisiologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
5.
Nat Commun ; 11(1): 5927, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230181

RESUMO

Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-ß (SUCLA2), causing global protein hyper-succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper-succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD+)-dependent desuccinylase SIRT5. To test the contribution of hyper-succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications.


Assuntos
Acil Coenzima A/metabolismo , Doenças Mitocondriais/patologia , Succinato-CoA Ligases/genética , Animais , Células Cultivadas , Feminino , Humanos , Lactente , Lisina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação , Proteômica , Sirtuínas/deficiência , Sirtuínas/genética , Sirtuínas/metabolismo , Succinato-CoA Ligases/deficiência , Succinato-CoA Ligases/metabolismo , Análise de Sobrevida , Peixe-Zebra
6.
Nat Commun ; 10(1): 5808, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862890

RESUMO

The causes of impaired skeletal muscle mass and strength during aging are well-studied in healthy populations. Less is known on pathological age-related muscle wasting and weakness termed sarcopenia, which directly impacts physical autonomy and survival. Here, we compare genome-wide transcriptional changes of sarcopenia versus age-matched controls in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica. Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα signalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial respiratory complex expression and activity, and low NAD+ levels through perturbed NAD+ biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in older people.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/patologia , Músculo Esquelético/patologia , NAD/biossíntese , Sarcopenia/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Casos e Controles , Metabolismo Energético/fisiologia , Humanos , Jamaica , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Proteostase , Sarcopenia/etnologia , Singapura , Reino Unido
7.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309855

RESUMO

The mTOR inhibitor rapamycin ameliorates the clinical and biochemical phenotype of mouse, worm, and cellular models of mitochondrial disease, via an unclear mechanism. Here, we show that prolonged rapamycin treatment improved motor endurance, corrected morphological abnormalities of muscle, and increased cytochrome c oxidase (COX) activity of a muscle-specific Cox15 knockout mouse (Cox15sm/sm ). Rapamycin treatment restored autophagic flux, which was impaired in naïve Cox15sm/sm muscle, and reduced the number of damaged mitochondria, which accumulated in untreated Cox15sm/sm mice. Conversely, rilmenidine, an mTORC1-independent autophagy inducer, was ineffective on the myopathic features of Cox15sm/sm animals. This stark difference supports the idea that inhibition of mTORC1 by rapamycin has a key role in the improvement of the mitochondrial function in Cox15sm/sm muscle. In contrast to rilmenidine, rapamycin treatment also activated lysosomal biogenesis in muscle. This effect was associated with increased nuclear localization of TFEB, a master regulator of lysosomal biogenesis, which is inhibited by mTORC1-dependent phosphorylation. We propose that the coordinated activation of autophagic flux and lysosomal biogenesis contribute to the effective clearance of dysfunctional mitochondria by rapamycin.


Assuntos
Autofagia , Lisossomos/metabolismo , Miopatias Mitocondriais/patologia , Biogênese de Organelas , Sirolimo/farmacologia , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Miopatias Mitocondriais/metabolismo , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/patologia , Fenótipo , Rilmenidina/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Cell Metab ; 21(6): 845-54, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039449

RESUMO

Increased levels of the mitochondria-shaping protein Opa1 improve respiratory chain efficiency and protect from tissue damage, suggesting that it could be an attractive target to counteract mitochondrial dysfunction. Here we show that Opa1 overexpression ameliorates two mouse models of defective mitochondrial bioenergetics. The offspring from crosses of a constitutive knockout for the structural complex I component Ndufs4 (Ndufs4(-/-)), and of a muscle-specific conditional knockout for the complex IV assembly factor Cox15 (Cox15(sm/sm)), with Opa1 transgenic (Opa1(tg)) mice showed improved motor skills and respiratory chain activities compared to the naive, non-Opa1-overexpressing, models. While the amelioration was modest in Ndufs4(-/-)::Opa1(tg) mice, correction of cristae ultrastructure and mitochondrial respiration, improvement of motor performance and prolongation of lifespan were remarkable in Cox15(sm/sm)::Opa1(tg) mice. Mechanistically, respiratory chain supercomplexes were increased in Cox15(sm/sm)::Opa1(tg) mice, and residual monomeric complex IV was stabilized. In conclusion, cristae shape amelioration by controlled Opa1 overexpression improves two mouse models of mitochondrial disease.


Assuntos
GTP Fosfo-Hidrolases/biossíntese , Regulação Enzimológica da Expressão Gênica , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Consumo de Oxigênio , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia
9.
Cell Metab ; 21(6): 834-44, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039448

RESUMO

Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Citocromos c/genética , Citocromos c/metabolismo , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Metab ; 14(1): 80-90, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21723506

RESUMO

Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1(-/-) and Cox15(-/-) mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2(KO/KI) mouse. These results open new perspectives for therapy of mitochondrial disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Deficiência de Citocromo-c Oxidase/tratamento farmacológico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transativadores/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/uso terapêutico , Animais , Bezafibrato/farmacologia , Deficiência de Citocromo-c Oxidase/metabolismo , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Introdução de Genes , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ribonucleotídeos/uso terapêutico , Transdução de Sinais , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA